File size: 2,365 Bytes
f13396f ff08658 f13396f ff08658 f13396f ff08658 f13396f ff08658 f13396f ff08658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# DistilUSE Podcast Natural Questions
This is a [sentence-transformers](https://www.SBERT.net) model built for asymmetric semantic search of Podcast episodes. It replicates the fine-tuning process of Spotify's podcast search model, as [described here](https://www.pinecone.io/learn/spotify-podcast-search/).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["podcast about climate change", "how to make money on the internet"]
model = SentenceTransformer('pinecone/distiluse-podcast-nq')
embeddings = model.encode(sentences)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 3748 with parameters:
```
{'batch_size': 64}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.RerankingEvaluator.RerankingEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 374,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Citing & Authors
James Briggs, [How Spotify Uses Semantic Search for Podcasts](https://www.pinecone.io/learn/spotify-podcast-search/), Pinecone
|