Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.53 +/- 1.43
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4666c62ba3dd6e8e380483f255890608e7179e3ae96da6616fdc97d5798103f
|
3 |
+
size 108179
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676108842962438457,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAd4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsDGjvlHmuj8+EYu/hf8MPrGzjj+wNsQ/Ld0lP5kz/bwrW6s+bRh5PYBui77LjtU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5OzphozqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]]",
|
60 |
+
"desired_goal": "[[-0.31873846 1.4601537 -1.0864637 ]\n [ 0.13769348 1.1148587 1.5329189 ]\n [ 0.6479061 -0.03090839 0.33467993]\n [ 0.06081431 -0.27232742 1.6684202 ]]",
|
61 |
+
"observation": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvqOJvZ7lDb6gZ5E9B1sPvmsg4L0bTVA+SLO7vfJ+Az5S/2M+JP2DPY9Ywb0oDpE6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.06720684 -0.13857123 0.07099843]\n [-0.13999568 -0.10943683 0.20341913]\n [-0.09165055 0.12841395 0.22265366]\n [ 0.06444767 -0.09440719 0.00110668]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14nL8QpEBcCUhpRSlIwBbJRLMowBdJRHQKeQOkjX4CZ1fZQoaAZoCWgPQwhtWFNZFLb/v5SGlFKUaBVLMmgWR0Cnj/lajesQdX2UKGgGaAloD0MI+64I/rcCFMCUhpRSlGgVSzJoFkdAp4+9hd+ocnV9lChoBmgJaA9DCB9kWTDx5wPAlIaUUpRoFUsyaBZHQKePe3qiXY11fZQoaAZoCWgPQwg/xty1hFwMwJSGlFKUaBVLMmgWR0CnkRuWjXWfdX2UKGgGaAloD0MIjlcgelKm+7+UhpRSlGgVSzJoFkdAp5DauMdcS3V9lChoBmgJaA9DCEJeDybFh/a/lIaUUpRoFUsyaBZHQKeQnvc8DCB1fZQoaAZoCWgPQwheEmdF1KQKwJSGlFKUaBVLMmgWR0CnkFz90ihWdX2UKGgGaAloD0MIUgq6vaSRBcCUhpRSlGgVSzJoFkdAp5H/QOWjXXV9lChoBmgJaA9DCNi5aTNOgwTAlIaUUpRoFUsyaBZHQKeRvl1bJOp1fZQoaAZoCWgPQwgzTkNU4Q8HwJSGlFKUaBVLMmgWR0CnkYLbg0j1dX2UKGgGaAloD0MINSiaB7CIA8CUhpRSlGgVSzJoFkdAp5FAvWYnfHV9lChoBmgJaA9DCGWPUDOkSvy/lIaUUpRoFUsyaBZHQKeS3Abhm5F1fZQoaAZoCWgPQwj1nV+UoP8PwJSGlFKUaBVLMmgWR0Cnkpsr/bTMdX2UKGgGaAloD0MImPkOfuLA/L+UhpRSlGgVSzJoFkdAp5JfZqVQh3V9lChoBmgJaA9DCD3TS4xluhPAlIaUUpRoFUsyaBZHQKeSHWgezUt1fZQoaAZoCWgPQwgQzTy5puAPwJSGlFKUaBVLMmgWR0Cnk7lF+d9VdX2UKGgGaAloD0MIQ8u6fyxE/r+UhpRSlGgVSzJoFkdAp5N4ckt293V9lChoBmgJaA9DCJUrvMtF/ADAlIaUUpRoFUsyaBZHQKeTPKe05U91fZQoaAZoCWgPQwg4SfPHtHYXwJSGlFKUaBVLMmgWR0Cnkvqj8DSxdX2UKGgGaAloD0MIBmNEotDyC8CUhpRSlGgVSzJoFkdAp5Sc76pHZ3V9lChoBmgJaA9DCBxcOuY84wfAlIaUUpRoFUsyaBZHQKeUXDQ7cO91fZQoaAZoCWgPQwgIV0Chnl4KwJSGlFKUaBVLMmgWR0CnlCDMV1wHdX2UKGgGaAloD0MIEcMOY9Kf/7+UhpRSlGgVSzJoFkdAp5Pe0Re1KHV9lChoBmgJaA9DCBRa1v1jMRLAlIaUUpRoFUsyaBZHQKeVw163RXx1fZQoaAZoCWgPQwj0+L1Nf9YPwJSGlFKUaBVLMmgWR0CnlYNjCpFTdX2UKGgGaAloD0MIyVaXUwLi+L+UhpRSlGgVSzJoFkdAp5VIQ6IWQHV9lChoBmgJaA9DCNrGn6hsuBbAlIaUUpRoFUsyaBZHQKeVByp71I11fZQoaAZoCWgPQwjCMcueBDYVwJSGlFKUaBVLMmgWR0Cnlz4HxBmgdX2UKGgGaAloD0MI/686cqRz+L+UhpRSlGgVSzJoFkdAp5b9yPuG9HV9lChoBmgJaA9DCI2chT3tcPm/lIaUUpRoFUsyaBZHQKeWwsYEW691fZQoaAZoCWgPQwjsUbgehTsewJSGlFKUaBVLMmgWR0CnloGBvrGBdX2UKGgGaAloD0MIxysQPSlT+7+UhpRSlGgVSzJoFkdAp5i4YBNmDnV9lChoBmgJaA9DCFTFVPoJxwjAlIaUUpRoFUsyaBZHQKeYeDaoMrp1fZQoaAZoCWgPQwiE8GjjiHUEwJSGlFKUaBVLMmgWR0CnmD0+LWI5dX2UKGgGaAloD0MIRwGiYMbUBMCUhpRSlGgVSzJoFkdAp5f8Es8PnXV9lChoBmgJaA9DCGuBPSZS6hPAlIaUUpRoFUsyaBZHQKeabMotthx1fZQoaAZoCWgPQwieXinLEIf5v5SGlFKUaBVLMmgWR0Cnmizs6aLGdX2UKGgGaAloD0MIPzvgumIGEMCUhpRSlGgVSzJoFkdAp5nzSZ0CBHV9lChoBmgJaA9DCKeVQiCX0CDAlIaUUpRoFUsyaBZHQKeZsh+vyLB1fZQoaAZoCWgPQwhYcD/ggeEJwJSGlFKUaBVLMmgWR0CnnAD3VTaTdX2UKGgGaAloD0MIL6NYbmmFFcCUhpRSlGgVSzJoFkdAp5vA6EJ0GXV9lChoBmgJaA9DCLLa/L/qCAjAlIaUUpRoFUsyaBZHQKebhh3qzJJ1fZQoaAZoCWgPQwjnVDIAVDH8v5SGlFKUaBVLMmgWR0Cnm0Tm4iHJdX2UKGgGaAloD0MIYabtX1n5FcCUhpRSlGgVSzJoFkdAp52U5sCT2XV9lChoBmgJaA9DCBAjhEcbxwXAlIaUUpRoFUsyaBZHQKedVOv+wTx1fZQoaAZoCWgPQwiKPEm6ZoIRwJSGlFKUaBVLMmgWR0CnnRn62v0RdX2UKGgGaAloD0MIX5ULlX99FsCUhpRSlGgVSzJoFkdAp5zYwj+rEXV9lChoBmgJaA9DCILjMm5q0BDAlIaUUpRoFUsyaBZHQKee+tT1kDp1fZQoaAZoCWgPQwjPoncq4M4SwJSGlFKUaBVLMmgWR0CnnroAn2IwdX2UKGgGaAloD0MIbLHbZ5VZAMCUhpRSlGgVSzJoFkdAp55+RLbpNnV9lChoBmgJaA9DCMTsZdtpqwTAlIaUUpRoFUsyaBZHQKeePJwKjSJ1fZQoaAZoCWgPQwgmNbQB2BAWwJSGlFKUaBVLMmgWR0Cnn+nAIppfdX2UKGgGaAloD0MIpDMw8rLm/r+UhpRSlGgVSzJoFkdAp5+o9ic5KnV9lChoBmgJaA9DCI7qdCDrSQ7AlIaUUpRoFUsyaBZHQKefbU/fO2R1fZQoaAZoCWgPQwg4E9OFWH34v5SGlFKUaBVLMmgWR0CnnytOM2m6dX2UKGgGaAloD0MIggGEDyUKFcCUhpRSlGgVSzJoFkdAp6DJqTKT0XV9lChoBmgJaA9DCD27fOvDqhTAlIaUUpRoFUsyaBZHQKegiOHWSU11fZQoaAZoCWgPQwhcV8wIb4//v5SGlFKUaBVLMmgWR0CnoE0wrUb2dX2UKGgGaAloD0MIhJohVRQvBMCUhpRSlGgVSzJoFkdAp6ALNt65XnV9lChoBmgJaA9DCL1tpkI8kg3AlIaUUpRoFUsyaBZHQKehtt0FKTV1fZQoaAZoCWgPQwhJaTaPw0AawJSGlFKUaBVLMmgWR0CnoXYh+vyLdX2UKGgGaAloD0MIRYMUPIVcAsCUhpRSlGgVSzJoFkdAp6E6YG+sYHV9lChoBmgJaA9DCASOBBps+hfAlIaUUpRoFUsyaBZHQKeg+GgSOBF1fZQoaAZoCWgPQwhjCtY4m44YwJSGlFKUaBVLMmgWR0CnorEAHVwxdX2UKGgGaAloD0MI2LlpM06D+7+UhpRSlGgVSzJoFkdAp6JwZ88cMnV9lChoBmgJaA9DCKfs9IO6aADAlIaUUpRoFUsyaBZHQKeiNNzr/sF1fZQoaAZoCWgPQwhpxTcUPtsXwJSGlFKUaBVLMmgWR0CnofL127nQdX2UKGgGaAloD0MI1xh0QuiwEcCUhpRSlGgVSzJoFkdAp6OwRAbADnV9lChoBmgJaA9DCNPaNLbXgvy/lIaUUpRoFUsyaBZHQKejb3u/k/91fZQoaAZoCWgPQwglsDkHz3QTwJSGlFKUaBVLMmgWR0CnozPQWvbHdX2UKGgGaAloD0MIlZwTe2gvFMCUhpRSlGgVSzJoFkdAp6Lx2ll9SnV9lChoBmgJaA9DCIgP7PgvkBbAlIaUUpRoFUsyaBZHQKeknhzeXRh1fZQoaAZoCWgPQwiU9gZfmBwWwJSGlFKUaBVLMmgWR0CnpF1G0/nodX2UKGgGaAloD0MIbsFSXcDbE8CUhpRSlGgVSzJoFkdAp6Qhi1Aqu3V9lChoBmgJaA9DCOPe/IaJJiDAlIaUUpRoFUsyaBZHQKej36zE74l1fZQoaAZoCWgPQwjyJyob1pT+v5SGlFKUaBVLMmgWR0CnpY9FfAsTdX2UKGgGaAloD0MI9kGWBRPvHsCUhpRSlGgVSzJoFkdAp6VPA44p+nV9lChoBmgJaA9DCCuGqwMg7hLAlIaUUpRoFUsyaBZHQKelE41gpjN1fZQoaAZoCWgPQwgYfJqTF3kQwJSGlFKUaBVLMmgWR0CnpNGGucMFdX2UKGgGaAloD0MIeEMaFTg5B8CUhpRSlGgVSzJoFkdAp6Z0fDDTB3V9lChoBmgJaA9DCKVKlL2l/BrAlIaUUpRoFUsyaBZHQKemM8p1A7h1fZQoaAZoCWgPQwjBOo4fKv0VwJSGlFKUaBVLMmgWR0CnpfgM2FWXdX2UKGgGaAloD0MIJQNAFTdOCsCUhpRSlGgVSzJoFkdAp6W2FnIyTXV9lChoBmgJaA9DCAn+t5IdqxHAlIaUUpRoFUsyaBZHQKenXN34bjt1fZQoaAZoCWgPQwhFL6NYbqkIwJSGlFKUaBVLMmgWR0CnpxxZ2ZAqdX2UKGgGaAloD0MIkWEVb2S+H8CUhpRSlGgVSzJoFkdAp6bgt+TePHV9lChoBmgJaA9DCLL2d7ZH7/2/lIaUUpRoFUsyaBZHQKemnsw+MZR1fZQoaAZoCWgPQwiS5/o+HKT9v5SGlFKUaBVLMmgWR0CnqEkZ75VPdX2UKGgGaAloD0MIjpQtknajFcCUhpRSlGgVSzJoFkdAp6gIf0VafXV9lChoBmgJaA9DCFdaRuo99QnAlIaUUpRoFUsyaBZHQKenzOfNA1N1fZQoaAZoCWgPQwjiIvd0dUcLwJSGlFKUaBVLMmgWR0Cnp4ryMDOkdX2UKGgGaAloD0MItBzoobaN/L+UhpRSlGgVSzJoFkdAp6knJDE3sHV9lChoBmgJaA9DCMk88gcDD/i/lIaUUpRoFUsyaBZHQKeo5mig00p1fZQoaAZoCWgPQwikOEcdHScTwJSGlFKUaBVLMmgWR0CnqKrHuJDWdX2UKGgGaAloD0MIi/z6ITZoFMCUhpRSlGgVSzJoFkdAp6hovzvqknV9lChoBmgJaA9DCH9o5sk1RRDAlIaUUpRoFUsyaBZHQKeqCg7o0Q91fZQoaAZoCWgPQwgYJegv9Ej7v5SGlFKUaBVLMmgWR0CnqclJQLuydX2UKGgGaAloD0MI6jwq/u/IAMCUhpRSlGgVSzJoFkdAp6mNfCyhSXV9lChoBmgJaA9DCF6hD5axAQTAlIaUUpRoFUsyaBZHQKepS3dbgTB1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24aa2e9cdbb3d7701050bec8e5cc077544907f234c19b19598c1277c34adb200
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86960cadd2bd017d3c235af91b57633b2425d5c36f041a9900208d9d7db6301b
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676108842962438457, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAd4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsDGjvlHmuj8+EYu/hf8MPrGzjj+wNsQ/Ld0lP5kz/bwrW6s+bRh5PYBui77LjtU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5OzphozqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]]", "desired_goal": "[[-0.31873846 1.4601537 -1.0864637 ]\n [ 0.13769348 1.1148587 1.5329189 ]\n [ 0.6479061 -0.03090839 0.33467993]\n [ 0.06081431 -0.27232742 1.6684202 ]]", "observation": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvqOJvZ7lDb6gZ5E9B1sPvmsg4L0bTVA+SLO7vfJ+Az5S/2M+JP2DPY9Ywb0oDpE6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06720684 -0.13857123 0.07099843]\n [-0.13999568 -0.10943683 0.20341913]\n [-0.09165055 0.12841395 0.22265366]\n [ 0.06444767 -0.09440719 0.00110668]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14nL8QpEBcCUhpRSlIwBbJRLMowBdJRHQKeQOkjX4CZ1fZQoaAZoCWgPQwhtWFNZFLb/v5SGlFKUaBVLMmgWR0Cnj/lajesQdX2UKGgGaAloD0MI+64I/rcCFMCUhpRSlGgVSzJoFkdAp4+9hd+ocnV9lChoBmgJaA9DCB9kWTDx5wPAlIaUUpRoFUsyaBZHQKePe3qiXY11fZQoaAZoCWgPQwg/xty1hFwMwJSGlFKUaBVLMmgWR0CnkRuWjXWfdX2UKGgGaAloD0MIjlcgelKm+7+UhpRSlGgVSzJoFkdAp5DauMdcS3V9lChoBmgJaA9DCEJeDybFh/a/lIaUUpRoFUsyaBZHQKeQnvc8DCB1fZQoaAZoCWgPQwheEmdF1KQKwJSGlFKUaBVLMmgWR0CnkFz90ihWdX2UKGgGaAloD0MIUgq6vaSRBcCUhpRSlGgVSzJoFkdAp5H/QOWjXXV9lChoBmgJaA9DCNi5aTNOgwTAlIaUUpRoFUsyaBZHQKeRvl1bJOp1fZQoaAZoCWgPQwgzTkNU4Q8HwJSGlFKUaBVLMmgWR0CnkYLbg0j1dX2UKGgGaAloD0MINSiaB7CIA8CUhpRSlGgVSzJoFkdAp5FAvWYnfHV9lChoBmgJaA9DCGWPUDOkSvy/lIaUUpRoFUsyaBZHQKeS3Abhm5F1fZQoaAZoCWgPQwj1nV+UoP8PwJSGlFKUaBVLMmgWR0Cnkpsr/bTMdX2UKGgGaAloD0MImPkOfuLA/L+UhpRSlGgVSzJoFkdAp5JfZqVQh3V9lChoBmgJaA9DCD3TS4xluhPAlIaUUpRoFUsyaBZHQKeSHWgezUt1fZQoaAZoCWgPQwgQzTy5puAPwJSGlFKUaBVLMmgWR0Cnk7lF+d9VdX2UKGgGaAloD0MIQ8u6fyxE/r+UhpRSlGgVSzJoFkdAp5N4ckt293V9lChoBmgJaA9DCJUrvMtF/ADAlIaUUpRoFUsyaBZHQKeTPKe05U91fZQoaAZoCWgPQwg4SfPHtHYXwJSGlFKUaBVLMmgWR0Cnkvqj8DSxdX2UKGgGaAloD0MIBmNEotDyC8CUhpRSlGgVSzJoFkdAp5Sc76pHZ3V9lChoBmgJaA9DCBxcOuY84wfAlIaUUpRoFUsyaBZHQKeUXDQ7cO91fZQoaAZoCWgPQwgIV0Chnl4KwJSGlFKUaBVLMmgWR0CnlCDMV1wHdX2UKGgGaAloD0MIEcMOY9Kf/7+UhpRSlGgVSzJoFkdAp5Pe0Re1KHV9lChoBmgJaA9DCBRa1v1jMRLAlIaUUpRoFUsyaBZHQKeVw163RXx1fZQoaAZoCWgPQwj0+L1Nf9YPwJSGlFKUaBVLMmgWR0CnlYNjCpFTdX2UKGgGaAloD0MIyVaXUwLi+L+UhpRSlGgVSzJoFkdAp5VIQ6IWQHV9lChoBmgJaA9DCNrGn6hsuBbAlIaUUpRoFUsyaBZHQKeVByp71I11fZQoaAZoCWgPQwjCMcueBDYVwJSGlFKUaBVLMmgWR0Cnlz4HxBmgdX2UKGgGaAloD0MI/686cqRz+L+UhpRSlGgVSzJoFkdAp5b9yPuG9HV9lChoBmgJaA9DCI2chT3tcPm/lIaUUpRoFUsyaBZHQKeWwsYEW691fZQoaAZoCWgPQwjsUbgehTsewJSGlFKUaBVLMmgWR0CnloGBvrGBdX2UKGgGaAloD0MIxysQPSlT+7+UhpRSlGgVSzJoFkdAp5i4YBNmDnV9lChoBmgJaA9DCFTFVPoJxwjAlIaUUpRoFUsyaBZHQKeYeDaoMrp1fZQoaAZoCWgPQwiE8GjjiHUEwJSGlFKUaBVLMmgWR0CnmD0+LWI5dX2UKGgGaAloD0MIRwGiYMbUBMCUhpRSlGgVSzJoFkdAp5f8Es8PnXV9lChoBmgJaA9DCGuBPSZS6hPAlIaUUpRoFUsyaBZHQKeabMotthx1fZQoaAZoCWgPQwieXinLEIf5v5SGlFKUaBVLMmgWR0Cnmizs6aLGdX2UKGgGaAloD0MIPzvgumIGEMCUhpRSlGgVSzJoFkdAp5nzSZ0CBHV9lChoBmgJaA9DCKeVQiCX0CDAlIaUUpRoFUsyaBZHQKeZsh+vyLB1fZQoaAZoCWgPQwhYcD/ggeEJwJSGlFKUaBVLMmgWR0CnnAD3VTaTdX2UKGgGaAloD0MIL6NYbmmFFcCUhpRSlGgVSzJoFkdAp5vA6EJ0GXV9lChoBmgJaA9DCLLa/L/qCAjAlIaUUpRoFUsyaBZHQKebhh3qzJJ1fZQoaAZoCWgPQwjnVDIAVDH8v5SGlFKUaBVLMmgWR0Cnm0Tm4iHJdX2UKGgGaAloD0MIYabtX1n5FcCUhpRSlGgVSzJoFkdAp52U5sCT2XV9lChoBmgJaA9DCBAjhEcbxwXAlIaUUpRoFUsyaBZHQKedVOv+wTx1fZQoaAZoCWgPQwiKPEm6ZoIRwJSGlFKUaBVLMmgWR0CnnRn62v0RdX2UKGgGaAloD0MIX5ULlX99FsCUhpRSlGgVSzJoFkdAp5zYwj+rEXV9lChoBmgJaA9DCILjMm5q0BDAlIaUUpRoFUsyaBZHQKee+tT1kDp1fZQoaAZoCWgPQwjPoncq4M4SwJSGlFKUaBVLMmgWR0CnnroAn2IwdX2UKGgGaAloD0MIbLHbZ5VZAMCUhpRSlGgVSzJoFkdAp55+RLbpNnV9lChoBmgJaA9DCMTsZdtpqwTAlIaUUpRoFUsyaBZHQKeePJwKjSJ1fZQoaAZoCWgPQwgmNbQB2BAWwJSGlFKUaBVLMmgWR0Cnn+nAIppfdX2UKGgGaAloD0MIpDMw8rLm/r+UhpRSlGgVSzJoFkdAp5+o9ic5KnV9lChoBmgJaA9DCI7qdCDrSQ7AlIaUUpRoFUsyaBZHQKefbU/fO2R1fZQoaAZoCWgPQwg4E9OFWH34v5SGlFKUaBVLMmgWR0CnnytOM2m6dX2UKGgGaAloD0MIggGEDyUKFcCUhpRSlGgVSzJoFkdAp6DJqTKT0XV9lChoBmgJaA9DCD27fOvDqhTAlIaUUpRoFUsyaBZHQKegiOHWSU11fZQoaAZoCWgPQwhcV8wIb4//v5SGlFKUaBVLMmgWR0CnoE0wrUb2dX2UKGgGaAloD0MIhJohVRQvBMCUhpRSlGgVSzJoFkdAp6ALNt65XnV9lChoBmgJaA9DCL1tpkI8kg3AlIaUUpRoFUsyaBZHQKehtt0FKTV1fZQoaAZoCWgPQwhJaTaPw0AawJSGlFKUaBVLMmgWR0CnoXYh+vyLdX2UKGgGaAloD0MIRYMUPIVcAsCUhpRSlGgVSzJoFkdAp6E6YG+sYHV9lChoBmgJaA9DCASOBBps+hfAlIaUUpRoFUsyaBZHQKeg+GgSOBF1fZQoaAZoCWgPQwhjCtY4m44YwJSGlFKUaBVLMmgWR0CnorEAHVwxdX2UKGgGaAloD0MI2LlpM06D+7+UhpRSlGgVSzJoFkdAp6JwZ88cMnV9lChoBmgJaA9DCKfs9IO6aADAlIaUUpRoFUsyaBZHQKeiNNzr/sF1fZQoaAZoCWgPQwhpxTcUPtsXwJSGlFKUaBVLMmgWR0CnofL127nQdX2UKGgGaAloD0MI1xh0QuiwEcCUhpRSlGgVSzJoFkdAp6OwRAbADnV9lChoBmgJaA9DCNPaNLbXgvy/lIaUUpRoFUsyaBZHQKejb3u/k/91fZQoaAZoCWgPQwglsDkHz3QTwJSGlFKUaBVLMmgWR0CnozPQWvbHdX2UKGgGaAloD0MIlZwTe2gvFMCUhpRSlGgVSzJoFkdAp6Lx2ll9SnV9lChoBmgJaA9DCIgP7PgvkBbAlIaUUpRoFUsyaBZHQKeknhzeXRh1fZQoaAZoCWgPQwiU9gZfmBwWwJSGlFKUaBVLMmgWR0CnpF1G0/nodX2UKGgGaAloD0MIbsFSXcDbE8CUhpRSlGgVSzJoFkdAp6Qhi1Aqu3V9lChoBmgJaA9DCOPe/IaJJiDAlIaUUpRoFUsyaBZHQKej36zE74l1fZQoaAZoCWgPQwjyJyob1pT+v5SGlFKUaBVLMmgWR0CnpY9FfAsTdX2UKGgGaAloD0MI9kGWBRPvHsCUhpRSlGgVSzJoFkdAp6VPA44p+nV9lChoBmgJaA9DCCuGqwMg7hLAlIaUUpRoFUsyaBZHQKelE41gpjN1fZQoaAZoCWgPQwgYfJqTF3kQwJSGlFKUaBVLMmgWR0CnpNGGucMFdX2UKGgGaAloD0MIeEMaFTg5B8CUhpRSlGgVSzJoFkdAp6Z0fDDTB3V9lChoBmgJaA9DCKVKlL2l/BrAlIaUUpRoFUsyaBZHQKemM8p1A7h1fZQoaAZoCWgPQwjBOo4fKv0VwJSGlFKUaBVLMmgWR0CnpfgM2FWXdX2UKGgGaAloD0MIJQNAFTdOCsCUhpRSlGgVSzJoFkdAp6W2FnIyTXV9lChoBmgJaA9DCAn+t5IdqxHAlIaUUpRoFUsyaBZHQKenXN34bjt1fZQoaAZoCWgPQwhFL6NYbqkIwJSGlFKUaBVLMmgWR0CnpxxZ2ZAqdX2UKGgGaAloD0MIkWEVb2S+H8CUhpRSlGgVSzJoFkdAp6bgt+TePHV9lChoBmgJaA9DCLL2d7ZH7/2/lIaUUpRoFUsyaBZHQKemnsw+MZR1fZQoaAZoCWgPQwiS5/o+HKT9v5SGlFKUaBVLMmgWR0CnqEkZ75VPdX2UKGgGaAloD0MIjpQtknajFcCUhpRSlGgVSzJoFkdAp6gIf0VafXV9lChoBmgJaA9DCFdaRuo99QnAlIaUUpRoFUsyaBZHQKenzOfNA1N1fZQoaAZoCWgPQwjiIvd0dUcLwJSGlFKUaBVLMmgWR0Cnp4ryMDOkdX2UKGgGaAloD0MItBzoobaN/L+UhpRSlGgVSzJoFkdAp6knJDE3sHV9lChoBmgJaA9DCMk88gcDD/i/lIaUUpRoFUsyaBZHQKeo5mig00p1fZQoaAZoCWgPQwikOEcdHScTwJSGlFKUaBVLMmgWR0CnqKrHuJDWdX2UKGgGaAloD0MIi/z6ITZoFMCUhpRSlGgVSzJoFkdAp6hovzvqknV9lChoBmgJaA9DCH9o5sk1RRDAlIaUUpRoFUsyaBZHQKeqCg7o0Q91fZQoaAZoCWgPQwgYJegv9Ej7v5SGlFKUaBVLMmgWR0CnqclJQLuydX2UKGgGaAloD0MI6jwq/u/IAMCUhpRSlGgVSzJoFkdAp6mNfCyhSXV9lChoBmgJaA9DCF6hD5axAQTAlIaUUpRoFUsyaBZHQKepS3dbgTB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (754 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.5323588744504377, "std_reward": 1.428050558777398, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T10:37:59.127582"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cbdad8accc31a5b3654afa3215fed45e2620dd889600eb079c47bda8f6a8370
|
3 |
+
size 3056
|