pittawat commited on
Commit
b43851c
1 Parent(s): 194904b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.53 +/- 1.43
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4666c62ba3dd6e8e380483f255890608e7179e3ae96da6616fdc97d5798103f
3
+ size 108179
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676108842962438457,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAd4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsDGjvlHmuj8+EYu/hf8MPrGzjj+wNsQ/Ld0lP5kz/bwrW6s+bRh5PYBui77LjtU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5OzphozqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]]",
60
+ "desired_goal": "[[-0.31873846 1.4601537 -1.0864637 ]\n [ 0.13769348 1.1148587 1.5329189 ]\n [ 0.6479061 -0.03090839 0.33467993]\n [ 0.06081431 -0.27232742 1.6684202 ]]",
61
+ "observation": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvqOJvZ7lDb6gZ5E9B1sPvmsg4L0bTVA+SLO7vfJ+Az5S/2M+JP2DPY9Ywb0oDpE6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.06720684 -0.13857123 0.07099843]\n [-0.13999568 -0.10943683 0.20341913]\n [-0.09165055 0.12841395 0.22265366]\n [ 0.06444767 -0.09440719 0.00110668]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14nL8QpEBcCUhpRSlIwBbJRLMowBdJRHQKeQOkjX4CZ1fZQoaAZoCWgPQwhtWFNZFLb/v5SGlFKUaBVLMmgWR0Cnj/lajesQdX2UKGgGaAloD0MI+64I/rcCFMCUhpRSlGgVSzJoFkdAp4+9hd+ocnV9lChoBmgJaA9DCB9kWTDx5wPAlIaUUpRoFUsyaBZHQKePe3qiXY11fZQoaAZoCWgPQwg/xty1hFwMwJSGlFKUaBVLMmgWR0CnkRuWjXWfdX2UKGgGaAloD0MIjlcgelKm+7+UhpRSlGgVSzJoFkdAp5DauMdcS3V9lChoBmgJaA9DCEJeDybFh/a/lIaUUpRoFUsyaBZHQKeQnvc8DCB1fZQoaAZoCWgPQwheEmdF1KQKwJSGlFKUaBVLMmgWR0CnkFz90ihWdX2UKGgGaAloD0MIUgq6vaSRBcCUhpRSlGgVSzJoFkdAp5H/QOWjXXV9lChoBmgJaA9DCNi5aTNOgwTAlIaUUpRoFUsyaBZHQKeRvl1bJOp1fZQoaAZoCWgPQwgzTkNU4Q8HwJSGlFKUaBVLMmgWR0CnkYLbg0j1dX2UKGgGaAloD0MINSiaB7CIA8CUhpRSlGgVSzJoFkdAp5FAvWYnfHV9lChoBmgJaA9DCGWPUDOkSvy/lIaUUpRoFUsyaBZHQKeS3Abhm5F1fZQoaAZoCWgPQwj1nV+UoP8PwJSGlFKUaBVLMmgWR0Cnkpsr/bTMdX2UKGgGaAloD0MImPkOfuLA/L+UhpRSlGgVSzJoFkdAp5JfZqVQh3V9lChoBmgJaA9DCD3TS4xluhPAlIaUUpRoFUsyaBZHQKeSHWgezUt1fZQoaAZoCWgPQwgQzTy5puAPwJSGlFKUaBVLMmgWR0Cnk7lF+d9VdX2UKGgGaAloD0MIQ8u6fyxE/r+UhpRSlGgVSzJoFkdAp5N4ckt293V9lChoBmgJaA9DCJUrvMtF/ADAlIaUUpRoFUsyaBZHQKeTPKe05U91fZQoaAZoCWgPQwg4SfPHtHYXwJSGlFKUaBVLMmgWR0Cnkvqj8DSxdX2UKGgGaAloD0MIBmNEotDyC8CUhpRSlGgVSzJoFkdAp5Sc76pHZ3V9lChoBmgJaA9DCBxcOuY84wfAlIaUUpRoFUsyaBZHQKeUXDQ7cO91fZQoaAZoCWgPQwgIV0Chnl4KwJSGlFKUaBVLMmgWR0CnlCDMV1wHdX2UKGgGaAloD0MIEcMOY9Kf/7+UhpRSlGgVSzJoFkdAp5Pe0Re1KHV9lChoBmgJaA9DCBRa1v1jMRLAlIaUUpRoFUsyaBZHQKeVw163RXx1fZQoaAZoCWgPQwj0+L1Nf9YPwJSGlFKUaBVLMmgWR0CnlYNjCpFTdX2UKGgGaAloD0MIyVaXUwLi+L+UhpRSlGgVSzJoFkdAp5VIQ6IWQHV9lChoBmgJaA9DCNrGn6hsuBbAlIaUUpRoFUsyaBZHQKeVByp71I11fZQoaAZoCWgPQwjCMcueBDYVwJSGlFKUaBVLMmgWR0Cnlz4HxBmgdX2UKGgGaAloD0MI/686cqRz+L+UhpRSlGgVSzJoFkdAp5b9yPuG9HV9lChoBmgJaA9DCI2chT3tcPm/lIaUUpRoFUsyaBZHQKeWwsYEW691fZQoaAZoCWgPQwjsUbgehTsewJSGlFKUaBVLMmgWR0CnloGBvrGBdX2UKGgGaAloD0MIxysQPSlT+7+UhpRSlGgVSzJoFkdAp5i4YBNmDnV9lChoBmgJaA9DCFTFVPoJxwjAlIaUUpRoFUsyaBZHQKeYeDaoMrp1fZQoaAZoCWgPQwiE8GjjiHUEwJSGlFKUaBVLMmgWR0CnmD0+LWI5dX2UKGgGaAloD0MIRwGiYMbUBMCUhpRSlGgVSzJoFkdAp5f8Es8PnXV9lChoBmgJaA9DCGuBPSZS6hPAlIaUUpRoFUsyaBZHQKeabMotthx1fZQoaAZoCWgPQwieXinLEIf5v5SGlFKUaBVLMmgWR0Cnmizs6aLGdX2UKGgGaAloD0MIPzvgumIGEMCUhpRSlGgVSzJoFkdAp5nzSZ0CBHV9lChoBmgJaA9DCKeVQiCX0CDAlIaUUpRoFUsyaBZHQKeZsh+vyLB1fZQoaAZoCWgPQwhYcD/ggeEJwJSGlFKUaBVLMmgWR0CnnAD3VTaTdX2UKGgGaAloD0MIL6NYbmmFFcCUhpRSlGgVSzJoFkdAp5vA6EJ0GXV9lChoBmgJaA9DCLLa/L/qCAjAlIaUUpRoFUsyaBZHQKebhh3qzJJ1fZQoaAZoCWgPQwjnVDIAVDH8v5SGlFKUaBVLMmgWR0Cnm0Tm4iHJdX2UKGgGaAloD0MIYabtX1n5FcCUhpRSlGgVSzJoFkdAp52U5sCT2XV9lChoBmgJaA9DCBAjhEcbxwXAlIaUUpRoFUsyaBZHQKedVOv+wTx1fZQoaAZoCWgPQwiKPEm6ZoIRwJSGlFKUaBVLMmgWR0CnnRn62v0RdX2UKGgGaAloD0MIX5ULlX99FsCUhpRSlGgVSzJoFkdAp5zYwj+rEXV9lChoBmgJaA9DCILjMm5q0BDAlIaUUpRoFUsyaBZHQKee+tT1kDp1fZQoaAZoCWgPQwjPoncq4M4SwJSGlFKUaBVLMmgWR0CnnroAn2IwdX2UKGgGaAloD0MIbLHbZ5VZAMCUhpRSlGgVSzJoFkdAp55+RLbpNnV9lChoBmgJaA9DCMTsZdtpqwTAlIaUUpRoFUsyaBZHQKeePJwKjSJ1fZQoaAZoCWgPQwgmNbQB2BAWwJSGlFKUaBVLMmgWR0Cnn+nAIppfdX2UKGgGaAloD0MIpDMw8rLm/r+UhpRSlGgVSzJoFkdAp5+o9ic5KnV9lChoBmgJaA9DCI7qdCDrSQ7AlIaUUpRoFUsyaBZHQKefbU/fO2R1fZQoaAZoCWgPQwg4E9OFWH34v5SGlFKUaBVLMmgWR0CnnytOM2m6dX2UKGgGaAloD0MIggGEDyUKFcCUhpRSlGgVSzJoFkdAp6DJqTKT0XV9lChoBmgJaA9DCD27fOvDqhTAlIaUUpRoFUsyaBZHQKegiOHWSU11fZQoaAZoCWgPQwhcV8wIb4//v5SGlFKUaBVLMmgWR0CnoE0wrUb2dX2UKGgGaAloD0MIhJohVRQvBMCUhpRSlGgVSzJoFkdAp6ALNt65XnV9lChoBmgJaA9DCL1tpkI8kg3AlIaUUpRoFUsyaBZHQKehtt0FKTV1fZQoaAZoCWgPQwhJaTaPw0AawJSGlFKUaBVLMmgWR0CnoXYh+vyLdX2UKGgGaAloD0MIRYMUPIVcAsCUhpRSlGgVSzJoFkdAp6E6YG+sYHV9lChoBmgJaA9DCASOBBps+hfAlIaUUpRoFUsyaBZHQKeg+GgSOBF1fZQoaAZoCWgPQwhjCtY4m44YwJSGlFKUaBVLMmgWR0CnorEAHVwxdX2UKGgGaAloD0MI2LlpM06D+7+UhpRSlGgVSzJoFkdAp6JwZ88cMnV9lChoBmgJaA9DCKfs9IO6aADAlIaUUpRoFUsyaBZHQKeiNNzr/sF1fZQoaAZoCWgPQwhpxTcUPtsXwJSGlFKUaBVLMmgWR0CnofL127nQdX2UKGgGaAloD0MI1xh0QuiwEcCUhpRSlGgVSzJoFkdAp6OwRAbADnV9lChoBmgJaA9DCNPaNLbXgvy/lIaUUpRoFUsyaBZHQKejb3u/k/91fZQoaAZoCWgPQwglsDkHz3QTwJSGlFKUaBVLMmgWR0CnozPQWvbHdX2UKGgGaAloD0MIlZwTe2gvFMCUhpRSlGgVSzJoFkdAp6Lx2ll9SnV9lChoBmgJaA9DCIgP7PgvkBbAlIaUUpRoFUsyaBZHQKeknhzeXRh1fZQoaAZoCWgPQwiU9gZfmBwWwJSGlFKUaBVLMmgWR0CnpF1G0/nodX2UKGgGaAloD0MIbsFSXcDbE8CUhpRSlGgVSzJoFkdAp6Qhi1Aqu3V9lChoBmgJaA9DCOPe/IaJJiDAlIaUUpRoFUsyaBZHQKej36zE74l1fZQoaAZoCWgPQwjyJyob1pT+v5SGlFKUaBVLMmgWR0CnpY9FfAsTdX2UKGgGaAloD0MI9kGWBRPvHsCUhpRSlGgVSzJoFkdAp6VPA44p+nV9lChoBmgJaA9DCCuGqwMg7hLAlIaUUpRoFUsyaBZHQKelE41gpjN1fZQoaAZoCWgPQwgYfJqTF3kQwJSGlFKUaBVLMmgWR0CnpNGGucMFdX2UKGgGaAloD0MIeEMaFTg5B8CUhpRSlGgVSzJoFkdAp6Z0fDDTB3V9lChoBmgJaA9DCKVKlL2l/BrAlIaUUpRoFUsyaBZHQKemM8p1A7h1fZQoaAZoCWgPQwjBOo4fKv0VwJSGlFKUaBVLMmgWR0CnpfgM2FWXdX2UKGgGaAloD0MIJQNAFTdOCsCUhpRSlGgVSzJoFkdAp6W2FnIyTXV9lChoBmgJaA9DCAn+t5IdqxHAlIaUUpRoFUsyaBZHQKenXN34bjt1fZQoaAZoCWgPQwhFL6NYbqkIwJSGlFKUaBVLMmgWR0CnpxxZ2ZAqdX2UKGgGaAloD0MIkWEVb2S+H8CUhpRSlGgVSzJoFkdAp6bgt+TePHV9lChoBmgJaA9DCLL2d7ZH7/2/lIaUUpRoFUsyaBZHQKemnsw+MZR1fZQoaAZoCWgPQwiS5/o+HKT9v5SGlFKUaBVLMmgWR0CnqEkZ75VPdX2UKGgGaAloD0MIjpQtknajFcCUhpRSlGgVSzJoFkdAp6gIf0VafXV9lChoBmgJaA9DCFdaRuo99QnAlIaUUpRoFUsyaBZHQKenzOfNA1N1fZQoaAZoCWgPQwjiIvd0dUcLwJSGlFKUaBVLMmgWR0Cnp4ryMDOkdX2UKGgGaAloD0MItBzoobaN/L+UhpRSlGgVSzJoFkdAp6knJDE3sHV9lChoBmgJaA9DCMk88gcDD/i/lIaUUpRoFUsyaBZHQKeo5mig00p1fZQoaAZoCWgPQwikOEcdHScTwJSGlFKUaBVLMmgWR0CnqKrHuJDWdX2UKGgGaAloD0MIi/z6ITZoFMCUhpRSlGgVSzJoFkdAp6hovzvqknV9lChoBmgJaA9DCH9o5sk1RRDAlIaUUpRoFUsyaBZHQKeqCg7o0Q91fZQoaAZoCWgPQwgYJegv9Ej7v5SGlFKUaBVLMmgWR0CnqclJQLuydX2UKGgGaAloD0MI6jwq/u/IAMCUhpRSlGgVSzJoFkdAp6mNfCyhSXV9lChoBmgJaA9DCF6hD5axAQTAlIaUUpRoFUsyaBZHQKepS3dbgTB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24aa2e9cdbb3d7701050bec8e5cc077544907f234c19b19598c1277c34adb200
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86960cadd2bd017d3c235af91b57633b2425d5c36f041a9900208d9d7db6301b
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676108842962438457, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAd4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/d4zjPhH31LiG5xw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsDGjvlHmuj8+EYu/hf8MPrGzjj+wNsQ/Ld0lP5kz/bwrW6s+bRh5PYBui77LjtU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5Ozphozp3jOM+EffUuIbnHD8cpvY7VnZ5OzphozqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01]]", "desired_goal": "[[-0.31873846 1.4601537 -1.0864637 ]\n [ 0.13769348 1.1148587 1.5329189 ]\n [ 0.6479061 -0.03090839 0.33467993]\n [ 0.06081431 -0.27232742 1.6684202 ]]", "observation": "[[ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]\n [ 4.44431037e-01 -1.01549675e-04 6.12907767e-01 7.52712600e-03\n 3.80649185e-03 1.24648889e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvqOJvZ7lDb6gZ5E9B1sPvmsg4L0bTVA+SLO7vfJ+Az5S/2M+JP2DPY9Ywb0oDpE6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06720684 -0.13857123 0.07099843]\n [-0.13999568 -0.10943683 0.20341913]\n [-0.09165055 0.12841395 0.22265366]\n [ 0.06444767 -0.09440719 0.00110668]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14nL8QpEBcCUhpRSlIwBbJRLMowBdJRHQKeQOkjX4CZ1fZQoaAZoCWgPQwhtWFNZFLb/v5SGlFKUaBVLMmgWR0Cnj/lajesQdX2UKGgGaAloD0MI+64I/rcCFMCUhpRSlGgVSzJoFkdAp4+9hd+ocnV9lChoBmgJaA9DCB9kWTDx5wPAlIaUUpRoFUsyaBZHQKePe3qiXY11fZQoaAZoCWgPQwg/xty1hFwMwJSGlFKUaBVLMmgWR0CnkRuWjXWfdX2UKGgGaAloD0MIjlcgelKm+7+UhpRSlGgVSzJoFkdAp5DauMdcS3V9lChoBmgJaA9DCEJeDybFh/a/lIaUUpRoFUsyaBZHQKeQnvc8DCB1fZQoaAZoCWgPQwheEmdF1KQKwJSGlFKUaBVLMmgWR0CnkFz90ihWdX2UKGgGaAloD0MIUgq6vaSRBcCUhpRSlGgVSzJoFkdAp5H/QOWjXXV9lChoBmgJaA9DCNi5aTNOgwTAlIaUUpRoFUsyaBZHQKeRvl1bJOp1fZQoaAZoCWgPQwgzTkNU4Q8HwJSGlFKUaBVLMmgWR0CnkYLbg0j1dX2UKGgGaAloD0MINSiaB7CIA8CUhpRSlGgVSzJoFkdAp5FAvWYnfHV9lChoBmgJaA9DCGWPUDOkSvy/lIaUUpRoFUsyaBZHQKeS3Abhm5F1fZQoaAZoCWgPQwj1nV+UoP8PwJSGlFKUaBVLMmgWR0Cnkpsr/bTMdX2UKGgGaAloD0MImPkOfuLA/L+UhpRSlGgVSzJoFkdAp5JfZqVQh3V9lChoBmgJaA9DCD3TS4xluhPAlIaUUpRoFUsyaBZHQKeSHWgezUt1fZQoaAZoCWgPQwgQzTy5puAPwJSGlFKUaBVLMmgWR0Cnk7lF+d9VdX2UKGgGaAloD0MIQ8u6fyxE/r+UhpRSlGgVSzJoFkdAp5N4ckt293V9lChoBmgJaA9DCJUrvMtF/ADAlIaUUpRoFUsyaBZHQKeTPKe05U91fZQoaAZoCWgPQwg4SfPHtHYXwJSGlFKUaBVLMmgWR0Cnkvqj8DSxdX2UKGgGaAloD0MIBmNEotDyC8CUhpRSlGgVSzJoFkdAp5Sc76pHZ3V9lChoBmgJaA9DCBxcOuY84wfAlIaUUpRoFUsyaBZHQKeUXDQ7cO91fZQoaAZoCWgPQwgIV0Chnl4KwJSGlFKUaBVLMmgWR0CnlCDMV1wHdX2UKGgGaAloD0MIEcMOY9Kf/7+UhpRSlGgVSzJoFkdAp5Pe0Re1KHV9lChoBmgJaA9DCBRa1v1jMRLAlIaUUpRoFUsyaBZHQKeVw163RXx1fZQoaAZoCWgPQwj0+L1Nf9YPwJSGlFKUaBVLMmgWR0CnlYNjCpFTdX2UKGgGaAloD0MIyVaXUwLi+L+UhpRSlGgVSzJoFkdAp5VIQ6IWQHV9lChoBmgJaA9DCNrGn6hsuBbAlIaUUpRoFUsyaBZHQKeVByp71I11fZQoaAZoCWgPQwjCMcueBDYVwJSGlFKUaBVLMmgWR0Cnlz4HxBmgdX2UKGgGaAloD0MI/686cqRz+L+UhpRSlGgVSzJoFkdAp5b9yPuG9HV9lChoBmgJaA9DCI2chT3tcPm/lIaUUpRoFUsyaBZHQKeWwsYEW691fZQoaAZoCWgPQwjsUbgehTsewJSGlFKUaBVLMmgWR0CnloGBvrGBdX2UKGgGaAloD0MIxysQPSlT+7+UhpRSlGgVSzJoFkdAp5i4YBNmDnV9lChoBmgJaA9DCFTFVPoJxwjAlIaUUpRoFUsyaBZHQKeYeDaoMrp1fZQoaAZoCWgPQwiE8GjjiHUEwJSGlFKUaBVLMmgWR0CnmD0+LWI5dX2UKGgGaAloD0MIRwGiYMbUBMCUhpRSlGgVSzJoFkdAp5f8Es8PnXV9lChoBmgJaA9DCGuBPSZS6hPAlIaUUpRoFUsyaBZHQKeabMotthx1fZQoaAZoCWgPQwieXinLEIf5v5SGlFKUaBVLMmgWR0Cnmizs6aLGdX2UKGgGaAloD0MIPzvgumIGEMCUhpRSlGgVSzJoFkdAp5nzSZ0CBHV9lChoBmgJaA9DCKeVQiCX0CDAlIaUUpRoFUsyaBZHQKeZsh+vyLB1fZQoaAZoCWgPQwhYcD/ggeEJwJSGlFKUaBVLMmgWR0CnnAD3VTaTdX2UKGgGaAloD0MIL6NYbmmFFcCUhpRSlGgVSzJoFkdAp5vA6EJ0GXV9lChoBmgJaA9DCLLa/L/qCAjAlIaUUpRoFUsyaBZHQKebhh3qzJJ1fZQoaAZoCWgPQwjnVDIAVDH8v5SGlFKUaBVLMmgWR0Cnm0Tm4iHJdX2UKGgGaAloD0MIYabtX1n5FcCUhpRSlGgVSzJoFkdAp52U5sCT2XV9lChoBmgJaA9DCBAjhEcbxwXAlIaUUpRoFUsyaBZHQKedVOv+wTx1fZQoaAZoCWgPQwiKPEm6ZoIRwJSGlFKUaBVLMmgWR0CnnRn62v0RdX2UKGgGaAloD0MIX5ULlX99FsCUhpRSlGgVSzJoFkdAp5zYwj+rEXV9lChoBmgJaA9DCILjMm5q0BDAlIaUUpRoFUsyaBZHQKee+tT1kDp1fZQoaAZoCWgPQwjPoncq4M4SwJSGlFKUaBVLMmgWR0CnnroAn2IwdX2UKGgGaAloD0MIbLHbZ5VZAMCUhpRSlGgVSzJoFkdAp55+RLbpNnV9lChoBmgJaA9DCMTsZdtpqwTAlIaUUpRoFUsyaBZHQKeePJwKjSJ1fZQoaAZoCWgPQwgmNbQB2BAWwJSGlFKUaBVLMmgWR0Cnn+nAIppfdX2UKGgGaAloD0MIpDMw8rLm/r+UhpRSlGgVSzJoFkdAp5+o9ic5KnV9lChoBmgJaA9DCI7qdCDrSQ7AlIaUUpRoFUsyaBZHQKefbU/fO2R1fZQoaAZoCWgPQwg4E9OFWH34v5SGlFKUaBVLMmgWR0CnnytOM2m6dX2UKGgGaAloD0MIggGEDyUKFcCUhpRSlGgVSzJoFkdAp6DJqTKT0XV9lChoBmgJaA9DCD27fOvDqhTAlIaUUpRoFUsyaBZHQKegiOHWSU11fZQoaAZoCWgPQwhcV8wIb4//v5SGlFKUaBVLMmgWR0CnoE0wrUb2dX2UKGgGaAloD0MIhJohVRQvBMCUhpRSlGgVSzJoFkdAp6ALNt65XnV9lChoBmgJaA9DCL1tpkI8kg3AlIaUUpRoFUsyaBZHQKehtt0FKTV1fZQoaAZoCWgPQwhJaTaPw0AawJSGlFKUaBVLMmgWR0CnoXYh+vyLdX2UKGgGaAloD0MIRYMUPIVcAsCUhpRSlGgVSzJoFkdAp6E6YG+sYHV9lChoBmgJaA9DCASOBBps+hfAlIaUUpRoFUsyaBZHQKeg+GgSOBF1fZQoaAZoCWgPQwhjCtY4m44YwJSGlFKUaBVLMmgWR0CnorEAHVwxdX2UKGgGaAloD0MI2LlpM06D+7+UhpRSlGgVSzJoFkdAp6JwZ88cMnV9lChoBmgJaA9DCKfs9IO6aADAlIaUUpRoFUsyaBZHQKeiNNzr/sF1fZQoaAZoCWgPQwhpxTcUPtsXwJSGlFKUaBVLMmgWR0CnofL127nQdX2UKGgGaAloD0MI1xh0QuiwEcCUhpRSlGgVSzJoFkdAp6OwRAbADnV9lChoBmgJaA9DCNPaNLbXgvy/lIaUUpRoFUsyaBZHQKejb3u/k/91fZQoaAZoCWgPQwglsDkHz3QTwJSGlFKUaBVLMmgWR0CnozPQWvbHdX2UKGgGaAloD0MIlZwTe2gvFMCUhpRSlGgVSzJoFkdAp6Lx2ll9SnV9lChoBmgJaA9DCIgP7PgvkBbAlIaUUpRoFUsyaBZHQKeknhzeXRh1fZQoaAZoCWgPQwiU9gZfmBwWwJSGlFKUaBVLMmgWR0CnpF1G0/nodX2UKGgGaAloD0MIbsFSXcDbE8CUhpRSlGgVSzJoFkdAp6Qhi1Aqu3V9lChoBmgJaA9DCOPe/IaJJiDAlIaUUpRoFUsyaBZHQKej36zE74l1fZQoaAZoCWgPQwjyJyob1pT+v5SGlFKUaBVLMmgWR0CnpY9FfAsTdX2UKGgGaAloD0MI9kGWBRPvHsCUhpRSlGgVSzJoFkdAp6VPA44p+nV9lChoBmgJaA9DCCuGqwMg7hLAlIaUUpRoFUsyaBZHQKelE41gpjN1fZQoaAZoCWgPQwgYfJqTF3kQwJSGlFKUaBVLMmgWR0CnpNGGucMFdX2UKGgGaAloD0MIeEMaFTg5B8CUhpRSlGgVSzJoFkdAp6Z0fDDTB3V9lChoBmgJaA9DCKVKlL2l/BrAlIaUUpRoFUsyaBZHQKemM8p1A7h1fZQoaAZoCWgPQwjBOo4fKv0VwJSGlFKUaBVLMmgWR0CnpfgM2FWXdX2UKGgGaAloD0MIJQNAFTdOCsCUhpRSlGgVSzJoFkdAp6W2FnIyTXV9lChoBmgJaA9DCAn+t5IdqxHAlIaUUpRoFUsyaBZHQKenXN34bjt1fZQoaAZoCWgPQwhFL6NYbqkIwJSGlFKUaBVLMmgWR0CnpxxZ2ZAqdX2UKGgGaAloD0MIkWEVb2S+H8CUhpRSlGgVSzJoFkdAp6bgt+TePHV9lChoBmgJaA9DCLL2d7ZH7/2/lIaUUpRoFUsyaBZHQKemnsw+MZR1fZQoaAZoCWgPQwiS5/o+HKT9v5SGlFKUaBVLMmgWR0CnqEkZ75VPdX2UKGgGaAloD0MIjpQtknajFcCUhpRSlGgVSzJoFkdAp6gIf0VafXV9lChoBmgJaA9DCFdaRuo99QnAlIaUUpRoFUsyaBZHQKenzOfNA1N1fZQoaAZoCWgPQwjiIvd0dUcLwJSGlFKUaBVLMmgWR0Cnp4ryMDOkdX2UKGgGaAloD0MItBzoobaN/L+UhpRSlGgVSzJoFkdAp6knJDE3sHV9lChoBmgJaA9DCMk88gcDD/i/lIaUUpRoFUsyaBZHQKeo5mig00p1fZQoaAZoCWgPQwikOEcdHScTwJSGlFKUaBVLMmgWR0CnqKrHuJDWdX2UKGgGaAloD0MIi/z6ITZoFMCUhpRSlGgVSzJoFkdAp6hovzvqknV9lChoBmgJaA9DCH9o5sk1RRDAlIaUUpRoFUsyaBZHQKeqCg7o0Q91fZQoaAZoCWgPQwgYJegv9Ej7v5SGlFKUaBVLMmgWR0CnqclJQLuydX2UKGgGaAloD0MI6jwq/u/IAMCUhpRSlGgVSzJoFkdAp6mNfCyhSXV9lChoBmgJaA9DCF6hD5axAQTAlIaUUpRoFUsyaBZHQKepS3dbgTB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (754 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.5323588744504377, "std_reward": 1.428050558777398, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T10:37:59.127582"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cbdad8accc31a5b3654afa3215fed45e2620dd889600eb079c47bda8f6a8370
3
+ size 3056