File size: 1,812 Bytes
228db95
 
7576c5b
228db95
 
 
 
 
 
 
 
 
 
 
 
7576c5b
228db95
2f7921c
228db95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7576c5b
228db95
 
 
 
 
 
 
 
 
 
 
2f7921c
 
 
 
 
 
 
 
 
 
228db95
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: cross-encoder/stsb-TinyBERT-L-4
tags:
- generated_from_trainer
model-index:
- name: crossencoder-km1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# crossencoder-km1

This model is a fine-tuned version of [cross-encoder/stsb-TinyBERT-L-4](https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0110

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 100
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.2478        | 1.0   | 20   | 6.6948          |
| 3.8026        | 2.0   | 40   | 2.8643          |
| 0.9993        | 3.0   | 60   | 0.8714          |
| 0.2986        | 4.0   | 80   | 0.2379          |
| 0.1161        | 5.0   | 100  | 0.0786          |
| 0.0414        | 6.0   | 120  | 0.0461          |
| 0.0218        | 7.0   | 140  | 0.0250          |
| 0.0144        | 8.0   | 160  | 0.0140          |
| 0.0101        | 9.0   | 180  | 0.0122          |
| 0.0083        | 10.0  | 200  | 0.0120          |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.0.1
- Datasets 2.17.0
- Tokenizers 0.15.2