File size: 5,564 Bytes
9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb 9221208 d372cfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
language:
- ja
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
metrics:
widget: []
pipeline_tag: sentence-similarity
license: apache-2.0
datasets:
- hpprc/emb
- hpprc/mqa-ja
- google-research-datasets/paws-x
---
# SentenceTransformer based on yano0/my_rope_bert_v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
The model is 1024-context sentence embedding model based on the RoFormer.
The model is pre-trained with Wikipedia and cc100 and fine-tuned as a sentence embedding model.
Fine-tuning begins with weakly supervised learning using mc4 and MQA.
After that, we perform the same 3-stage learning process as [GLuCoSE v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2).
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pkshatech/RoSEtta-base")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8363 |
| **spearman_cosine** | **0.7829** |
| pearson_manhattan | 0.8169 |
| spearman_manhattan | 0.7806 |
| pearson_euclidean | 0.8176 |
| spearman_euclidean | 0.7813 |
| pearson_dot | 0.7906 |
| spearman_dot | 0.7341 |
| pearson_max | 0.8363 |
| spearman_max | 0.7829 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Benchmarks
### Retieval
Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) and [MLDR-ja](https://huggingface.co/datasets/Shitao/MLDR).
| model | size | MIRACL<br>Recall@5 | JQaRA<br>nDCG@10 | MLDR<br>nDCG@10 |
|--------|--------|---------------------|-------------------|-------------------|
| me5-base | 0.3B | 84.2 | 47.2 | 25.4 |
| GLuCoSE | 0.1B | 53.3 | 30.8 | 25.2 |
| RoSEtta | 0.2B | 79.3 | 57.7 | 32.3 |
### JMTEB
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
* Time-consuming [‘amazon_review_classification’, ‘mrtydi’, ‘jaqket’, ‘esci’] were excluded and evaluated.
* The average is a macro-average per task.
| model | size | Class. | Ret. | STS. | Clus. | Pair. | Avg. |
|--------|--------|--------|------|------|-------|-------|------|
| me5-base | 0.3B | 75.1 | 80.6 | 80.5 | 52.6 | 62.4 | 70.2 |
| GLuCoSE | 0.1B | 82.6 | 69.8 | 78.2 | 51.5 | 66.2 | 69.7 |
| RoSEtta | 0.2B | 79.0 | 84.3 | 81.4 | 53.2 | 61.7 | 71.9 |
## Authors
Chihiro Yano, Go Mocho, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe
## License
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). |