|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch RetrievaBERT model. |
|
The follwoing are the differences of the original huffingface/MegatronBERT model. |
|
- Use RoPE instead of absolute position embeddings. |
|
- Use Grouped Query Attention (GQA) instead of the standard self-attention. |
|
- Use Swiglu activation function instead of GELU. |
|
RoPE implementation is based on the huggingface's Llama and RoFormer model. |
|
GQA/Swiglu implementation is based on the Llama model. |
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py |
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/roformer/modeling_roformer.py |
|
""" |
|
|
|
import math |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
NextSentencePredictorOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_retrieva_bert import RetrievaBertConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "RetrievaBertConfig" |
|
_CHECKPOINT_FOR_DOC = "retrieva-jp/bert-1.3b" |
|
|
|
|
|
def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model.""" |
|
try: |
|
import re |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info(f"Loading TF weight {name} with shape {shape}") |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split("/") |
|
|
|
|
|
if any(n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name): |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "output_weights": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == "_embeddings": |
|
pointer = getattr(pointer, "weight") |
|
elif m_name == "kernel": |
|
array = np.transpose(array) |
|
if pointer.shape != array.shape: |
|
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") |
|
logger.info("Initialize PyTorch weight {}".format(name)) |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
"""Rotary Embedding for positional encoding.""" |
|
|
|
def __init__(self, hidden_size, max_position_embeddings, theta, rotary_percent=1.0, device=None): |
|
super().__init__() |
|
if rotary_percent < 1.0: |
|
hidden_size = int(hidden_size * rotary_percent) |
|
self.hidden_size = hidden_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.theta = theta |
|
inv_freq = 1.0 / (self.theta ** (torch.arange(0, hidden_size, 2, dtype=torch.int64).float().to(device) / hidden_size)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, x, position_ids): |
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class RetrievaBertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
if config.position_embedding_type == "absolute": |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
else: |
|
self.position_embeddings = None |
|
if config.type_vocab_size > 0: |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
else: |
|
self.token_type_embeddings = None |
|
|
|
|
|
|
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
if self.position_embeddings is not None: |
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : past_key_values_length + input_shape[1]] |
|
position_embeddings = self.position_embeddings(position_ids) |
|
else: |
|
position_embeddings = None |
|
|
|
if self.token_type_embeddings is not None: |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
else: |
|
token_type_embeddings = None |
|
|
|
if position_embeddings is not None and token_type_embeddings is not None: |
|
embeddings = inputs_embeds + position_embeddings + token_type_embeddings |
|
elif position_embeddings is not None: |
|
embeddings = inputs_embeds + position_embeddings |
|
elif token_type_embeddings is not None: |
|
embeddings = inputs_embeds + token_type_embeddings |
|
else: |
|
embeddings = inputs_embeds |
|
|
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""Repeat key/value weigts for GQA. |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
class RetrievaBertSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.num_key_value_heads * self.attention_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.num_key_value_heads * self.attention_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
if config.position_embedding_type == "rope": |
|
self.rope_theta = config.rope_theta |
|
self.rope_emb = RotaryEmbedding(self.attention_head_size, config.max_position_embeddings, self.rope_theta, config.rotary_percent) |
|
else: |
|
self.rope_theta = None |
|
self.rope_emb = None |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor, is_query: bool) -> torch.Tensor: |
|
if is_query: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
else: |
|
new_x_shape = x.size()[:-1] + (self.num_key_value_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
query_layer = self.transpose_for_scores(mixed_query_layer, is_query=True) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states), is_query=False) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states), is_query=False) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states), is_query=False) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states), is_query=False) |
|
|
|
|
|
if self.rope_emb is not None: |
|
cos, sin = self.rope_emb(hidden_states, position_ids) |
|
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin) |
|
|
|
if past_key_value is not None: |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
|
|
|
|
key_layer = repeat_kv(key_layer, self.num_key_value_groups) |
|
value_layer = repeat_kv(value_layer, self.num_key_value_groups) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class RetrievaBertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return residual + hidden_states |
|
|
|
|
|
|
|
class RetrievaBertAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.self = RetrievaBertSelfAttention(config) |
|
self.output = RetrievaBertSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices(heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
ln_outputs = self.ln(hidden_states) |
|
self_outputs = self.self( |
|
ln_outputs, |
|
attention_mask, |
|
position_ids, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class RetrievaBertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias) |
|
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
gate_hidden_states = self.gate_proj(hidden_states) |
|
gate_hidden_states = self.intermediate_act_fn(gate_hidden_states) |
|
up_hidden_state = self.up_proj(hidden_states) |
|
hidden_states = gate_hidden_states * up_hidden_state |
|
return hidden_states |
|
|
|
|
|
|
|
class RetrievaBertOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return input_tensor + hidden_states |
|
|
|
|
|
|
|
class RetrievaBertLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = RetrievaBertAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise TypeError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = RetrievaBertAttention(config) |
|
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.intermediate = RetrievaBertIntermediate(config) |
|
self.output = RetrievaBertOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise AttributeError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
position_ids, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
ln_output = self.ln(attention_output) |
|
intermediate_output = self.intermediate(ln_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class RetrievaBertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([RetrievaBertLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
|
|
|
|
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
use_cache = False |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
|
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
|
|
hidden_states = self.ln(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class RetrievaBertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
|
|
class RetrievaBertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.lm_head_hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.lm_head_hidden_act] |
|
else: |
|
self.transform_act_fn = config.lm_head_hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class RetrievaBertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = RetrievaBertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def _tie_weights(self): |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class RetrievaBertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = RetrievaBertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
|
|
class RetrievaBertOnlyNSPHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, pooled_output): |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return seq_relationship_score |
|
|
|
|
|
|
|
class RetrievaBertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = RetrievaBertLMPredictionHead(config) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class RetrievaBertPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = RetrievaBertConfig |
|
load_tf_weights = load_tf_weights_in_megatron_bert |
|
base_model_prefix = "bert" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
@dataclass |
|
|
|
class RetrievaBertForPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`RetrievaBertForPreTraining`]. |
|
Args: |
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Total loss as the sum of the masked language modeling loss and the next sequence prediction |
|
(classification) loss. |
|
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation |
|
before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
prediction_logits: torch.FloatTensor = None |
|
seq_relationship_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
RETRIEVA_BERT_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`RetrievaBertConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
RETRIEVA_BERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare RetrievaBert Model transformer outputting raw hidden-states without any specific head on top.", |
|
RETRIEVA_BERT_START_DOCSTRING, |
|
) |
|
class RetrievaBertModel(RetrievaBertPreTrainedModel): |
|
""" |
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in [Attention is |
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = RetrievaBertEmbeddings(config) |
|
self.encoder = RetrievaBertEncoder(config) |
|
|
|
self.pooler = RetrievaBertPooler(config) if add_pooling_layer else None |
|
|
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a |
|
`next sentence prediction (classification)` head. |
|
RetrievaBert uses a `masked language modeling` only. |
|
""", |
|
RETRIEVA_BERT_START_DOCSTRING, |
|
) |
|
class RetrievaBertForPreTraining(RetrievaBertPreTrainedModel): |
|
_tied_weights_keys = ["cls.predictions.decoder"] |
|
|
|
def __init__(self, config, add_binary_head=True): |
|
super().__init__(config) |
|
|
|
self.bert = RetrievaBertModel(config) |
|
self.cls = RetrievaBertPreTrainingHeads(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
self.cls.predictions.bias = new_embeddings.bias |
|
|
|
@add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=RetrievaBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
next_sentence_label: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, RetrievaBertForPreTrainingOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair |
|
(see `input_ids` docstring) Indices should be in `[0, 1]`: |
|
- 0 indicates sequence B is a continuation of sequence A, |
|
- 1 indicates sequence B is a random sequence. |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer |
|
>>> from models import RetrievaBertForPreTraining |
|
>>> import torch |
|
>>> tokenizer = AutoTokenizer.from_pretrained("retrieva-jp/bert-1.3b") |
|
>>> model = RetrievaBertForPreTraining.from_pretrained("retrieva-jp/bert-1.3b") |
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> prediction_logits = outputs.prediction_logits |
|
>>> seq_relationship_logits = outputs.seq_relationship_logits |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) |
|
|
|
total_loss = None |
|
if labels is not None and next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) |
|
total_loss = masked_lm_loss + next_sentence_loss |
|
|
|
if not return_dict: |
|
output = (prediction_scores, seq_relationship_score) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return RetrievaBertForPreTrainingOutput( |
|
loss=total_loss, |
|
prediction_logits=prediction_scores, |
|
seq_relationship_logits=seq_relationship_score, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""RetrievaBert Model with a `language modeling` head on top for CLM fine-tuning.""", |
|
RETRIEVA_BERT_START_DOCSTRING, |
|
) |
|
class RetrievaBertForCausalLM(RetrievaBertPreTrainedModel): |
|
_tied_weights_keys = ["cls.predictions.decoder"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if not config.is_decoder: |
|
logger.warning("If you want to use `RetrievaBertForCausalLM` as a standalone, add `is_decoder=True.`") |
|
|
|
self.bert = RetrievaBertModel(config, add_pooling_layer=False) |
|
self.cls = RetrievaBertOnlyMLMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
self.cls.predictions.bias = new_embeddings.bias |
|
|
|
@add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer |
|
>>> from models import RetrievaBertForCausalLM, RetrievaBertConfig |
|
>>> import torch |
|
>>> tokenizer = AutoTokenizer.from_pretrained("retrieva-jp/bert-1.3b") |
|
>>> model = RetrievaBertForCausalLM.from_pretrained("retrieva-jp/bert-1.3b", is_decoder=True) |
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> prediction_logits = outputs.logits |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=lm_loss, |
|
logits=prediction_scores, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
|
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings("""RetrievaBert Model with a `language modeling` head on top.""", RETRIEVA_BERT_START_DOCSTRING) |
|
class RetrievaBertForMaskedLM(RetrievaBertPreTrainedModel): |
|
_tied_weights_keys = ["cls.predictions.decoder"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning("If you want to use `RetrievaBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention.") |
|
|
|
self.bert = RetrievaBertModel(config, add_pooling_layer=False) |
|
self.cls = RetrievaBertOnlyMLMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
self.cls.predictions.bias = new_embeddings.bias |
|
|
|
@add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
effective_batch_size = input_shape[0] |
|
|
|
|
|
if self.config.pad_token_id is None: |
|
raise ValueError("The PAD token should be defined for generation") |
|
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) |
|
dummy_token = torch.full((effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device) |
|
input_ids = torch.cat([input_ids, dummy_token], dim=1) |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |
|
|
|
|
|
@add_start_docstrings( |
|
"""RetrievaBert Model with a `next sentence prediction (classification)` head on top.""", |
|
RETRIEVA_BERT_START_DOCSTRING, |
|
) |
|
class RetrievaBertForNextSentencePrediction(RetrievaBertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = RetrievaBertModel(config) |
|
self.cls = RetrievaBertOnlyNSPHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(RETRIEVA_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple, NextSentencePredictorOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair |
|
(see `input_ids` docstring). Indices should be in `[0, 1]`: |
|
- 0 indicates sequence B is a continuation of sequence A, |
|
- 1 indicates sequence B is a random sequence. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer |
|
>>> from models import RetrievaBertForNextSentencePrediction |
|
>>> import torch |
|
>>> tokenizer = AutoTokenizer.from_pretrained("retrieva-jp/bert-1.3b") |
|
>>> model = RetrievaBertForNextSentencePrediction.from_pretrained("retrieva-jp/bert-1.3b") |
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." |
|
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") |
|
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) |
|
>>> logits = outputs.logits |
|
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random |
|
```""" |
|
|
|
if "next_sentence_label" in kwargs: |
|
warnings.warn( |
|
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", |
|
FutureWarning, |
|
) |
|
labels = kwargs.pop("next_sentence_label") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
seq_relationship_scores = self.cls(pooled_output) |
|
|
|
next_sentence_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (seq_relationship_scores,) + outputs[2:] |
|
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output |
|
|
|
return NextSentencePredictorOutput( |
|
loss=next_sentence_loss, |
|
logits=seq_relationship_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|