---
language:
- ja
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
metrics:
widget: []
pipeline_tag: sentence-similarity
license: apache-2.0
datasets:
- hpprc/emb
- hpprc/mqa-ja
- google-research-datasets/paws-x
---
## Model Details
The model is 1024-context sentence embedding model based on the RoFormer.
The model is pre-trained with Wikipedia and cc100 and fine-tuned as a sentence embedding model.
Fine-tuning begins with weakly supervised learning using mc4 and MQA.
After that, we perform the same 3-stage learning process as [GLuCoSE v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2).
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pkshatech/RoSEtta-base")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Benchmarks
### Retieval
Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) and [MLDR-ja](https://huggingface.co/datasets/Shitao/MLDR).
| model | size | MIRACL
Recall@5 | JQaRA
nDCG@10 | MLDR
nDCG@10 |
|--------|--------|---------------------|-------------------|-------------------|
| me5-base | 0.3B | 84.2 | 47.2 | 25.4 |
| GLuCoSE | 0.1B | 53.3 | 30.8 | 25.2 |
| RoSEtta | 0.2B | 79.3 | 57.7 | 32.3 |
### JMTEB
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
* Time-consuming [‘amazon_review_classification’, ‘mrtydi’, ‘jaqket’, ‘esci’] were excluded and evaluated.
* The average is a macro-average per task.
| model | size | Class. | Ret. | STS. | Clus. | Pair. | Avg. |
|--------|--------|--------|------|------|-------|-------|------|
| me5-base | 0.3B | 75.1 | 80.6 | 80.5 | 52.6 | 62.4 | 70.2 |
| GLuCoSE | 0.1B | 82.6 | 69.8 | 78.2 | 51.5 | 66.2 | 69.7 |
| RoSEtta | 0.2B | 79.0 | 84.3 | 81.4 | 53.2 | 61.7 | 71.9 |
## Authors
Chihiro Yano, Go Mocho, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe
## License
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).