plaguss HF staff commited on
Commit
201664e
·
verified ·
1 Parent(s): 342f157

Model save

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-0.5B
3
+ library_name: transformers
4
+ model_name: Qwen2.5-0.5B-Math-Shepherd-PRM-0.1
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - stepwise-reward-trainer
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-0.5B-Math-Shepherd-PRM-0.1
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="plaguss/Qwen2.5-0.5B-Math-Shepherd-PRM-0.1", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/plaguss/huggingface/runs/k1qvhdfz)
31
+
32
+ This model was trained with Stepwise Reward.
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.13.0.dev0
37
+ - Transformers: 4.46.0.dev0
38
+ - Pytorch: 2.4.1
39
+ - Datasets: 3.0.1
40
+ - Tokenizers: 0.20.1
41
+
42
+ ## Citations
43
+
44
+ Cite Stepwise Reward as:
45
+
46
+ ```bibtex
47
+ @article{uesato2022solving,
48
+ title = {Solving Math Word Problems With Process- and Outcome-Based Feedback},
49
+ author = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina},
50
+ year = 2022,
51
+ journal = {arXiv preprint arXiv:2211.14275}
52
+ }
53
+ ```
54
+
55
+ Cite TRL as:
56
+
57
+ ```bibtex
58
+ @misc{vonwerra2022trl,
59
+ title = {{TRL: Transformer Reinforcement Learning}},
60
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
61
+ year = 2020,
62
+ journal = {GitHub repository},
63
+ publisher = {GitHub},
64
+ howpublished = {\url{https://github.com/huggingface/trl}}
65
+ }
66
+ ```