File size: 4,602 Bytes
de4b817
dbafa58
59a2337
de4b817
ef0b9de
670b3fd
ef0b9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbafa58
ef0b9de
 
 
bc68fbf
dbafa58
7a16ef2
dbafa58
 
de4b817
 
 
ef0b9de
de4b817
0034dc5
 
cc8b8ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bda6a9
de4b817
 
 
 
 
 
 
 
 
59a2337
de4b817
 
 
6bda6a9
de4b817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0299eb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: 
- apache-2.0
tags:
- text generation
- emailgen
- email generation
- email
datasets:
- aeslc
- postbot/multi-emails-100k

widget:
- text: "Good Morning Professor Beans,

Hope you are doing well. I just wanted to reach out and ask if differential calculus will be on the exam"
  example_title: "email to prof"
- text: "Hey <NAME>,\n\nThank you for signing up for my weekly newsletter. Before we get started, you'll have to confirm your email address." 
  example_title: "newsletter"
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and ask about office hours" 
  example_title: "office hours"
- text: "Greetings <NAME>,\n\nI hope you had a splendid evening at the Company sausage eating festival. I am reaching out because" 
  example_title: "festival"
- text: "Good Morning Harold,\n\nI was wondering when the next" 
  example_title: "event"
- text: "URGENT - I need the TPS reports"
  example_title: "URGENT"
- text: "Hi Archibald,\n\nI hope this email finds you extremely well." 
  example_title: "emails that find you"
- text: "Hello there.\n\nI just wanted to reach out and check in to"
  example_title: "checking in"
- text: "Hello <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if you've enjoyed your time with us"
  example_title: "work well"
- text: "Hi <NAME>,\n\nI hope this email finds you well. I wanted to reach out and see if we could catch up"
  example_title: "catch up"
- text: "I'm <NAME> and I just moved into the area and wanted to reach out and get some details on where I could get groceries and"
  example_title: "grocery"
parameters:
  min_length: 32
  max_length: 128
  no_repeat_ngram_size: 2
  do_sample: True
  temperature: 0.3
  top_k: 20
  top_p: 0.95
  repetition_penalty: 3.5
  length_penalty: 0.9
---


# gpt2-medium-emailgen

[![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/pszemraj/70058788c6d4b430398c12ee8ba10602/minimal-demo-for-postbot-gpt2-medium-emailgen.ipynb
)

Why write the entire email when you can generate (most of) it?

```python
from transformers import pipeline

model_tag = "postbot/gpt2-medium-emailgen"
generator = pipeline(
              'text-generation', 
              model=model_tag, 
            )
            
prompt = """
Hello, 

Following up on the bubblegum shipment."""

result = generator(
    prompt,
    max_length=64,
    do_sample=False,
    early_stopping=True,
) # generate
print(result[0]['generated_text'])
```

## about

This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the postbot/multi-emails-100k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5840

## Model description

More information needed

## Intended uses & limitations

- this is intended as a tool to save time writing predictable emails and not to write emails without a human-in-the-loop. validate that your email is factually correct before sending it to others.

## Training and evaluation data

- the dataset is essentially a hand-curated/augmented expansion to the classic `aeslc` dataset

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8701        | 1.0   | 789  | 1.8378          |
| 1.5065        | 2.0   | 1578 | 1.6176          |
| 1.1873        | 3.0   | 2367 | 1.5840          |


### Framework versions

- Transformers 4.22.2
- Pytorch 1.10.0+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_postbot__gpt2-medium-emailgen)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 25.97   |
| ARC (25-shot)         | 26.45          |
| HellaSwag (10-shot)   | 34.31    |
| MMLU (5-shot)         | 24.1         |
| TruthfulQA (0-shot)   | 43.96   |
| Winogrande (5-shot)   | 50.43   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 2.53         |