End of training
Browse files
README.md
CHANGED
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Wer
|
27 |
type: wer
|
28 |
-
value: 0.
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -35,8 +35,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
35 |
|
36 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
-
- Loss: 0.
|
39 |
-
- Wer: 0.
|
40 |
|
41 |
## Model description
|
42 |
|
@@ -66,18 +66,22 @@ The following hyperparameters were used during training:
|
|
66 |
- total_eval_batch_size: 4
|
67 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
- lr_scheduler_type: linear
|
69 |
-
- lr_scheduler_warmup_steps:
|
70 |
-
- training_steps:
|
71 |
- mixed_precision_training: Native AMP
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
76 |
|:-------------:|:------:|:----:|:---------------:|:------:|
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Wer
|
27 |
type: wer
|
28 |
+
value: 0.4430396682052311
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
35 |
|
36 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.0858
|
39 |
+
- Wer: 0.4430
|
40 |
|
41 |
## Model description
|
42 |
|
|
|
66 |
- total_eval_batch_size: 4
|
67 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
- lr_scheduler_type: linear
|
69 |
+
- lr_scheduler_warmup_steps: 1000
|
70 |
+
- training_steps: 8000
|
71 |
- mixed_precision_training: Native AMP
|
72 |
|
73 |
### Training results
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
76 |
|:-------------:|:------:|:----:|:---------------:|:------:|
|
77 |
+
| 0.2913 | 0.2175 | 1000 | 0.2658 | 0.7758 |
|
78 |
+
| 0.2112 | 0.4349 | 2000 | 0.1918 | 0.6780 |
|
79 |
+
| 0.1733 | 0.6524 | 3000 | 0.1544 | 0.6206 |
|
80 |
+
| 0.1485 | 0.8698 | 4000 | 0.1279 | 0.5651 |
|
81 |
+
| 0.1029 | 1.0873 | 5000 | 0.1102 | 0.5119 |
|
82 |
+
| 0.0989 | 1.3047 | 6000 | 0.0983 | 0.4775 |
|
83 |
+
| 0.0935 | 1.5222 | 7000 | 0.0901 | 0.4566 |
|
84 |
+
| 0.0863 | 1.7396 | 8000 | 0.0858 | 0.4430 |
|
85 |
|
86 |
|
87 |
### Framework versions
|