File size: 3,216 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
\begin{thebibliography}{7}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi: #1}\else
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
\bibitem[Goodfellow et~al.(2014)Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville, and Bengio]{gan}
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
\newblock Generative adversarial nets.
\newblock In Z.~Ghahramani, M.~Welling, C.~Cortes, N.~Lawrence, and K.Q.
Weinberger (eds.), \emph{Advances in Neural Information Processing Systems},
volume~27. Curran Associates, Inc., 2014.
\newblock URL
\url{https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf}.
\bibitem[Ho et~al.(2020)Ho, Jain, and Abbeel]{ddpm}
Jonathan Ho, Ajay Jain, and Pieter Abbeel.
\newblock Denoising diffusion probabilistic models.
\newblock In H.~Larochelle, M.~Ranzato, R.~Hadsell, M.F. Balcan, and H.~Lin
(eds.), \emph{Advances in Neural Information Processing Systems}, volume~33,
pp.\ 6840--6851. Curran Associates, Inc., 2020.
\newblock URL
\url{https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf}.
\bibitem[Karras et~al.(2022)Karras, Aittala, Aila, and Laine]{edm}
Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
\newblock Elucidating the design space of diffusion-based generative models.
\newblock In Alice~H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), \emph{Advances in Neural Information Processing Systems}, 2022.
\newblock URL \url{https://openreview.net/forum?id=k7FuTOWMOc7}.
\bibitem[Kingma \& Welling(2014)Kingma and Welling]{vae}
Diederik~P. Kingma and Max Welling.
\newblock {Auto-Encoding Variational Bayes}.
\newblock In \emph{2nd International Conference on Learning Representations,
{ICLR} 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings}, 2014.
\bibitem[Kotelnikov et~al.(2022)Kotelnikov, Baranchuk, Rubachev, and
Babenko]{kotelnikov2022tabddpm}
Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko.
\newblock Tabddpm: Modelling tabular data with diffusion models, 2022.
\bibitem[Sohl-Dickstein et~al.(2015)Sohl-Dickstein, Weiss, Maheswaranathan, and
Ganguli]{pmlr-v37-sohl-dickstein15}
Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
\newblock Deep unsupervised learning using nonequilibrium thermodynamics.
\newblock In Francis Bach and David Blei (eds.), \emph{Proceedings of the 32nd
International Conference on Machine Learning}, volume~37 of \emph{Proceedings
of Machine Learning Research}, pp.\ 2256--2265, Lille, France, 07--09 Jul
2015. PMLR.
\bibitem[Yang et~al.(2023)Yang, Zhang, Song, Hong, Xu, Zhao, Zhang, Cui, and
Yang]{yang2023diffusion}
Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao
Zhang, Bin Cui, and Ming-Hsuan Yang.
\newblock Diffusion models: A comprehensive survey of methods and applications.
\newblock \emph{ACM Computing Surveys}, 56\penalty0 (4):\penalty0 1--39, 2023.
\end{thebibliography}
|