File size: 119,893 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 |
2024-07-25 21:41:45 *Starting idea: 20240725_214144_rl_lr_adaptation* 2024-07-25 21:41:45 *Starting Experiments* Experiment Plan We will conduct the following experiments to evaluate the effectiveness of using Q-learning for dynamic learning rate adaptation in transformer training: 1 Run 1: Q-learning with initial learning rate 1e-3 • Dataset: shakespeare_char • Initial learning rate: 1e-3 • Q-learning parameters: • Learning rate for Q-learning: 0.1 • Discount factor: 0.9 • Exploration rate: 0.1 2 Run 2: Q-learning with initial learning rate 5e-4 • Dataset: enwik8 • Initial learning rate: 5e-4 • Q-learning parameters: • Learning rate for Q-learning: 0.1 • Discount factor: 0.9 • Exploration rate: 0.1 3 Run 3: Q-learning with initial learning rate 1e-3 • Dataset: text8 • Initial learning rate: 1e-3 • Q-learning parameters: • Learning rate for Q-learning: 0.1 • Discount factor: 0.9 • Exploration rate: 0.1 4 Run 4: Q-learning with initial learning rate 5e-4 • Dataset: shakespeare_char • Initial learning rate: 5e-4 • Q-learning parameters: • Learning rate for Q-learning: 0.1 • Discount factor: 0.9 • Exploration rate: 0.1 5 Run 5: Q-learning with initial learning rate 1e-3 • Dataset: enwik8 • Initial learning rate: 1e-3 • Q-learning parameters: • Learning rate for Q-learning: 0.1 • Discount factor: 0.9 • Exploration rate: 0.1 Implementation Steps 1 Implement Q-learning agent: Create a Q-learning agent that will adjust the learning rate based on the current state (validation loss, current learning rate). 2 Integrate Q-learning agent into training loop: Modify the training loop to incorporate the Q-learning agent's adjustments to the learning rate at each evaluation interval. 3 Run experiments: Execute the planned experiments and compare the results with the baseline. Step 1: Implement Q-learning Agent Let's start by implementing the Q-learning agent. q_learning_agent.py <<<<<<< SEARCH ======= import numpy as np class QLearningAgent: def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1): self.lr = lr self.gamma = gamma self.epsilon = epsilon self.q_table = {} def get_state(self, val_loss, current_lr): return (round(val_loss, 2), round(current_lr, 5)) def choose_action(self, state): if np.random.rand() < self.epsilon: return np.random.choice([-1, 0, 1]) if state not in self.q_table: self.q_table[state] = [0, 0, 0] return np.argmax(self.q_table[state]) - 1 def update_q_values(self, state, action, reward, next_state): if state not in self.q_table: self.q_table[state] = [0, 0, 0] if next_state not in self.q_table: self.q_table[next_state] = [0, 0, 0] best_next_action = np.argmax(self.q_table[next_state]) td_target = reward + self.gamma * self.q_table[next_state][best_next_action] td_error = td_target - self.q_table[state][action + 1] self.q_table[state][action + 1] += self.lr * td_error >>>>>>> REPLACE Step 2: Integrate Q-learning Agent into Training Loop Next, we will modify the training loop in experiment.py to incorporate the Q-learning agent's adjustments to the learning rate at each evaluation interval. experiment.py <<<<<<< SEARCH import numpy as np import torch import torch.nn as nn from torch.nn import functional as F import argparse ======= from q_learning_agent import QLearningAgent >>>>>>> REPLACE experiment.py <<<<<<< SEARCH # model init ======= # Q-learning agent init q_agent = QLearningAgent(lr=0.1, gamma=0.9, epsilon=0.1) >>>>>>> REPLACE experiment.py <<<<<<< SEARCH val_log_info.append( ======= # Q-learning: Update learning rate based on Q-learning agent state = q_agent.get_state(losses["val"], lr) action = q_agent.choose_action(state) lr = max(min_lr, lr * (1 + action * 0.1)) # Adjust learning rate next_state = q_agent.get_state(losses["val"], lr) reward = -losses["val"] # Reward is negative validation loss q_agent.update_q_values(state, action, reward, next_state) val_log_info.append( >>>>>>> REPLACE Step 3: Run Experiments After implementing the Q-learning agent and integrating it into the training loop, we will run the experiments using the command python experiment.py --out_dir=run_i where i is the run number. Please proceed to run the first experiment using the command: python experiment.py --out_dir=run_1 Once the first experiment is complete, we can proceed with the subsequent experiments. 10207 prompt tokens, 1220 completion tokens, $0.069335 cost Applied edit to q_learning_agent.py Applied edit to experiment.py # Fix any errors below, if possible. ## Running: /home/anon/ai_scientist/venv/bin/python3 -m flake8 --select=E9,F821,F823,F831,F406,F407,F701,F702,F704,F706 --show-source --isolated experiment.py experiment.py:12:17: F821 undefined name 'nn' class LayerNorm(nn.Module): ^ experiment.py:17:23: F821 undefined name 'nn' self.weight = nn.Parameter(torch.ones(ndim)) ^ experiment.py:17:36: F821 undefined name 'torch' self.weight = nn.Parameter(torch.ones(ndim)) ^ experiment.py:18:21: F821 undefined name 'nn' self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None ^ experiment.py:18:34: F821 undefined name 'torch' self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None ^ experiment.py:21:16: F821 undefined name 'F' return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) ^ experiment.py:24:27: F821 undefined name 'nn' class CausalSelfAttention(nn.Module): ^ experiment.py:30:23: F821 undefined name 'nn' self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) ^ experiment.py:32:23: F821 undefined name 'nn' self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) ^ experiment.py:34:29: F821 undefined name 'nn' self.attn_dropout = nn.Dropout(config.dropout) ^ experiment.py:35:30: F821 undefined name 'nn' self.resid_dropout = nn.Dropout(config.dropout) ^ experiment.py:40:30: F821 undefined name 'torch' self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") ^ experiment.py:48:17: F821 undefined name 'torch' torch.tril(torch.ones(config.block_size, config.block_size)).view( ^ experiment.py:48:28: F821 undefined name 'torch' torch.tril(torch.ones(config.block_size, config.block_size)).view( ^ experiment.py:73:17: F821 undefined name 'torch' y = torch.nn.functional.scaled_dot_product_attention( ^ experiment.py:85:19: F821 undefined name 'F' att = F.softmax(att, dim=-1) ^ experiment.py:97:11: F821 undefined name 'nn' class MLP(nn.Module): ^ experiment.py:101:21: F821 undefined name 'nn' self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) ^ experiment.py:102:21: F821 undefined name 'nn' self.gelu = nn.GELU() ^ experiment.py:103:23: F821 undefined name 'nn' self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) ^ experiment.py:104:24: F821 undefined name 'nn' self.dropout = nn.Dropout(config.dropout) ^ experiment.py:114:13: F821 undefined name 'nn' class Block(nn.Module): ^ experiment.py:144:11: F821 undefined name 'nn' class GPT(nn.Module): ^ experiment.py:152:28: F821 undefined name 'nn' self.transformer = nn.ModuleDict( ^ experiment.py:154:21: F821 undefined name 'nn' wte=nn.Embedding(config.vocab_size, config.n_embd), ^ experiment.py:155:21: F821 undefined name 'nn' wpe=nn.Embedding(config.block_size, config.n_embd), ^ experiment.py:156:22: F821 undefined name 'nn' drop=nn.Dropout(config.dropout), ^ experiment.py:157:19: F821 undefined name 'nn' h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ^ experiment.py:161:24: F821 undefined name 'nn' self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) ^ experiment.py:175:17: F821 undefined name 'torch' torch.nn.init.normal_( ^ experiment.py:195:31: F821 undefined name 'nn' if isinstance(module, nn.Linear): ^ experiment.py:196:13: F821 undefined name 'torch' torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) ^ experiment.py:198:17: F821 undefined name 'torch' torch.nn.init.zeros_(module.bias) ^ experiment.py:199:33: F821 undefined name 'nn' elif isinstance(module, nn.Embedding): ^ experiment.py:200:13: F821 undefined name 'torch' torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) ^ experiment.py:208:15: F821 undefined name 'torch' pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) ^ experiment.py:208:40: F821 undefined name 'torch' pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) ^ experiment.py:221:20: F821 undefined name 'F' loss = F.cross_entropy( ^ experiment.py:239:39: F821 undefined name 'nn' self.transformer.wpe.weight = nn.Parameter( ^ experiment.py:268:56: F821 undefined name 'torch' fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters ^ experiment.py:271:21: F821 undefined name 'torch' optimizer = torch.optim.AdamW( ^ experiment.py:278:6: F821 undefined name 'torch' @torch.no_grad() ^ experiment.py:298:24: F821 undefined name 'torch' v, _ = torch.topk(logits, min(top_k, logits.size(-1))) ^ experiment.py:301:21: F821 undefined name 'F' probs = F.softmax(logits, dim=-1) ^ experiment.py:303:24: F821 undefined name 'torch' idx_next = torch.multinomial(probs, num_samples=1) ^ experiment.py:305:19: F821 undefined name 'torch' idx = torch.cat((idx, idx_next), dim=1) ^ experiment.py:351:27: F821 undefined name 'torch' dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler ^ experiment.py:351:57: F821 undefined name 'torch' dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler ^ experiment.py:363:5: F821 undefined name 'torch' torch.manual_seed(1337 + seed_offset) ^ experiment.py:364:5: F821 undefined name 'torch' torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul ^ experiment.py:365:5: F821 undefined name 'torch' torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn ^ experiment.py:369:20: F821 undefined name 'torch' "float32": torch.float32, ^ experiment.py:370:21: F821 undefined name 'torch' "bfloat16": torch.bfloat16, ^ experiment.py:371:20: F821 undefined name 'torch' "float16": torch.float16, ^ experiment.py:376:14: F821 undefined name 'torch' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) ^ experiment.py:387:20: F821 undefined name 'np' data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r") ^ experiment.py:387:73: F821 undefined name 'np' data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r") ^ experiment.py:389:20: F821 undefined name 'np' data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r") ^ experiment.py:389:71: F821 undefined name 'np' data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r") ^ experiment.py:390:14: F821 undefined name 'torch' ix = torch.randint(len(data) - block_size, (batch_size,)) ^ experiment.py:391:13: F821 undefined name 'torch' x = torch.stack( ^ experiment.py:392:14: F821 undefined name 'torch' [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix] ^ experiment.py:392:65: F821 undefined name 'np' [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix] ^ experiment.py:394:13: F821 undefined name 'torch' y = torch.stack( ^ experiment.py:396:17: F821 undefined name 'torch' torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64)) ^ experiment.py:396:76: F821 undefined name 'np' torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64)) ^ experiment.py:451:14: F821 undefined name 'torch' scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16")) ^ experiment.py:463:17: F821 undefined name 'torch' model = torch.compile(model) # requires PyTorch 2.0 ^ experiment.py:467:6: F821 undefined name 'torch' @torch.no_grad() ^ experiment.py:472:22: F821 undefined name 'torch' losses = torch.zeros(eval_iters) ^ experiment.py:548:21: F821 undefined name 'torch' torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt")) ^ experiment.py:567:13: F821 undefined name 'torch' torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) ^ experiment.py:632:10: F821 undefined name 'torch' x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) ^ experiment.py:632:40: F821 undefined name 'torch' x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) ^ experiment.py:637:10: F821 undefined name 'torch' with torch.no_grad(): ^ experiment.py:671:10: F821 undefined name 'argparse' parser = argparse.ArgumentParser(description='Run experiment') ^ experiment.py:694:31: F821 undefined name 'np' means = {f"{k}_mean": np.mean(v) for k, v in final_info_dict.items()} ^ experiment.py:695:35: F821 undefined name 'np' stderrs = {f"{k}_stderr": np.std(v) / len(v) for k, v in final_info_dict.items()} ^ experiment.py:706:9: F821 undefined name 'np' np.save(f, all_results) ^ ## See relevant lines below marked with █. experiment.py: ...⋮... 9│from q_learning_agent import QLearningAgent 10│ 11│# --- BEGIN model.py --- 12█class LayerNorm(nn.Module): 13│ """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" 14│ 15│ def __init__(self, ndim, bias): 16│ super().__init__() 17█ self.weight = nn.Parameter(torch.ones(ndim)) 18█ self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None 19│ 20│ def forward(self, input): 21█ return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) 22│ 23│ 24█class CausalSelfAttention(nn.Module): 25│ 26│ def __init__(self, config): 27│ super().__init__() 28│ assert config.n_embd % config.n_head == 0 29│ # key, query, value projections for all heads, but in a batch 30█ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) 31│ # output projection 32█ self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) 33│ # regularization 34█ self.attn_dropout = nn.Dropout(config.dropout) 35█ self.resid_dropout = nn.Dropout(config.dropout) 36│ self.n_head = config.n_head 37│ self.n_embd = config.n_embd 38│ self.dropout = config.dropout 39│ # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 40█ self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") 41│ if not self.flash: 42│ print( 43│ "WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0" 44│ ) 45│ # causal mask to ensure that attention is only applied to the left in the input sequence 46│ self.register_buffer( 47│ "bias", 48█ torch.tril(torch.ones(config.block_size, config.block_size)).view( 49│ 1, 1, config.block_size, config.block_size 50│ ), 51│ ) 52│ 53│ def forward(self, x): 54│ B, T, C = ( 55│ x.size() ...⋮... 70│ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) 71│ if self.flash: 72│ # efficient attention using Flash Attention CUDA kernels 73█ y = torch.nn.functional.scaled_dot_product_attention( 74│ q, 75│ k, 76│ v, 77│ attn_mask=None, 78│ dropout_p=self.dropout if self.training else 0, 79│ is_causal=True, 80│ ) 81│ else: 82│ # manual implementation of attention 83│ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) 84│ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf")) 85█ att = F.softmax(att, dim=-1) 86│ att = self.attn_dropout(att) 87│ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) 88│ y = ( ...⋮... 94│ return y 95│ 96│ 97█class MLP(nn.Module): 98│ 99│ def __init__(self, config): 100│ super().__init__() 101█ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) 102█ self.gelu = nn.GELU() 103█ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) 104█ self.dropout = nn.Dropout(config.dropout) 105│ 106│ def forward(self, x): 107│ x = self.c_fc(x) ...⋮... 111│ return x 112│ 113│ 114█class Block(nn.Module): 115│ 116│ def __init__(self, config): 117│ super().__init__() ...⋮... 141│ ) 142│ 143│ 144█class GPT(nn.Module): 145│ 146│ def __init__(self, config): 147│ super().__init__() 148│ assert config.vocab_size is not None 149│ assert config.block_size is not None 150│ self.config = config 151│ 152█ self.transformer = nn.ModuleDict( 153│ dict( 154█ wte=nn.Embedding(config.vocab_size, config.n_embd), 155█ wpe=nn.Embedding(config.block_size, config.n_embd), 156█ drop=nn.Dropout(config.dropout), 157█ h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), 158│ ln_f=LayerNorm(config.n_embd, bias=config.bias), 159│ ) 160│ ) 161█ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) 162│ # with weight tying when using torch.compile() some warnings get generated: 163│ # "UserWarning: functional_call was passed multiple values for tied weights. 164│ # This behavior is deprecated and will be an error in future versions" ...⋮... 172│ # apply special scaled init to the residual projections, per GPT-2 paper 173│ for pn, p in self.named_parameters(): 174│ if pn.endswith("c_proj.weight"): 175█ torch.nn.init.normal_( 176│ p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer) 177│ ) 178│ ...⋮... 192│ return n_params 193│ 194│ def _init_weights(self, module): 195█ if isinstance(module, nn.Linear): 196█ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) 197│ if module.bias is not None: 198█ torch.nn.init.zeros_(module.bias) 199█ elif isinstance(module, nn.Embedding): 200█ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) 201│ 202│ def forward(self, idx, targets=None): 203│ device = idx.device 204│ b, t = idx.size() 205│ assert ( 206│ t <= self.config.block_size 207│ ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" 208█ pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) 209│ 210│ # forward the GPT model itself 211│ tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) ...⋮... 218│ if targets is not None: 219│ # if we are given some desired targets also calculate the loss 220│ logits = self.lm_head(x) 221█ loss = F.cross_entropy( 222│ logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1 223│ ) 224│ else: ...⋮... 233│ def crop_block_size(self, block_size): ...⋮... 236│ # but want to use a smaller block size for some smaller, simpler model 237│ assert block_size <= self.config.block_size 238│ self.config.block_size = block_size 239█ self.transformer.wpe.weight = nn.Parameter( 240│ self.transformer.wpe.weight[:block_size] 241│ ) 242│ for block in self.transformer.h: ...⋮... 246│ def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): 247│ # start with all of the candidate parameters 248│ param_dict = {pn: p for pn, p in self.named_parameters()} ...⋮... 265│ f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters" 266│ ) 267│ # Create AdamW optimizer and use the fused version if it is available 268█ fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters 269│ use_fused = fused_available and device_type == "cuda" 270│ extra_args = dict(fused=True) if use_fused else dict() 271█ optimizer = torch.optim.AdamW( 272│ optim_groups, lr=learning_rate, betas=betas, **extra_args 273│ ) 274│ print(f"using fused AdamW: {use_fused}") 275│ 276│ return optimizer 277│ 278█ @torch.no_grad() 279│ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): 280│ """ 281│ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete 282│ the sequence max_new_tokens times, feeding the predictions back into the model each time. 283│ Most likely you'll want to make sure to be in model.eval() mode of operation for this. 284│ """ 285│ for _ in range(max_new_tokens): 286│ # if the sequence context is growing too long we must crop it at block_size 287│ idx_cond = ( 288│ idx 289│ if idx.size(1) <= self.config.block_size 290│ else idx[:, -self.config.block_size :] ...⋮... 295│ logits = logits[:, -1, :] / temperature 296│ # optionally crop the logits to only the top k options 297│ if top_k is not None: 298█ v, _ = torch.topk(logits, min(top_k, logits.size(-1))) 299│ logits[logits < v[:, [-1]]] = -float("Inf") 300│ # apply softmax to convert logits to (normalized) probabilities 301█ probs = F.softmax(logits, dim=-1) 302│ # sample from the distribution 303█ idx_next = torch.multinomial(probs, num_samples=1) 304│ # append sampled index to the running sequence and continue 305█ idx = torch.cat((idx, idx_next), dim=1) 306│ 307│ return idx 308│ ...⋮... 311│def train(dataset="shakespeare_char", out_dir="run_0", seed_offset=0): ...⋮... 315│ gradient_accumulation_steps = 1 ...⋮... 348│ backend = "nccl" # 'nccl', 'gloo', etc. 349│ # system 350│ device = "cuda" # Always use CUDA 351█ dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler 352│ compile = True # do not torch compile the model on macbooks 353│ 354│ ...⋮... 360│ 361│ if master_process: 362│ os.makedirs(out_dir, exist_ok=True) 363█ torch.manual_seed(1337 + seed_offset) 364█ torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul 365█ torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn 366│ device_type = "cuda" if "cuda" in device else "cpu" # for later use in torch.autocast 367│ # note: float16 data type will automatically use a GradScaler 368│ ptdtype = { 369█ "float32": torch.float32, 370█ "bfloat16": torch.bfloat16, 371█ "float16": torch.float16, 372│ }[dtype] 373│ ctx = ( 374│ nullcontext() 375│ if device_type == "cpu" 376█ else torch.amp.autocast(device_type=device_type, dtype=ptdtype) 377│ ) 378│ 379│ # poor man's data loader ...⋮... 383│ def get_batch(split): 384│ # We recreate np.memmap every batch to avoid a memory leak, as per 385│ # https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-i terate-once/61472122#61472122 386│ if split == "train": 387█ data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r") 388│ else: 389█ data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r") 390█ ix = torch.randint(len(data) - block_size, (batch_size,)) 391█ x = torch.stack( 392█ [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix] 393│ ) 394█ y = torch.stack( 395│ [ 396█ torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64)) 397│ for i in ix 398│ ] 399│ ) ...⋮... 448│ model.to(device) 449│ 450│ # initialize a GradScaler. If enabled=False scaler is a no-op 451█ scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16")) 452│ 453│ # optimizer 454│ optimizer = model.configure_optimizers( ...⋮... 460│ if compile: 461│ print("compiling the model... (takes a ~minute)") 462│ unoptimized_model = model 463█ model = torch.compile(model) # requires PyTorch 2.0 464│ 465│ 466│ # helps estimate an arbitrarily accurate loss over either split using many batches 467█ @torch.no_grad() 468│ def estimate_loss(): 469│ out = {} 470│ model.eval() 471│ for split in ["train", "val"]: 472█ losses = torch.zeros(eval_iters) 473│ for k in range(eval_iters): 474│ X, Y = get_batch(split) 475│ with ctx: ...⋮... 508│ while True: 509│ ...⋮... 511│ lr = get_lr(iter_num) if decay_lr else learning_rate ...⋮... 516│ if iter_num % eval_interval == 0 and master_process: 517│ losses = estimate_loss() ...⋮... 537│ if losses["val"] < best_val_loss or always_save_checkpoint: 538│ best_val_loss = losses["val"] 539│ if iter_num > 0 and not never_save_checkpoint: 540│ checkpoint = { 541│ "model": raw_model.state_dict(), 542│ "optimizer": optimizer.state_dict(), 543│ "model_args": model_args, 544│ "iter_num": iter_num, 545│ "best_val_loss": best_val_loss, 546│ } 547│ print(f"saving checkpoint to {out_dir}") 548█ torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt")) 549│ if iter_num == 0 and eval_only: 550│ break 551│ ...⋮... 564│ # clip the gradient 565│ if grad_clip != 0.0: 566│ scaler.unscale_(optimizer) 567█ torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) 568│ # step the optimizer and scaler if training in fp16 569│ scaler.step(optimizer) 570│ scaler.update() ...⋮... 629│ with open(start[5:], 'r', encoding='utf-8') as f: 630│ start = f.read() 631│ start_ids = encode(start) 632█ x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) 633│ 634│ # Run generation 635│ model.eval() 636│ results = [] 637█ with torch.no_grad(): 638│ with ctx: 639│ for k in range(num_samples): 640│ start_time = time.time() ...⋮... 668│ json.dump(final_info, f) 669│ return final_info, train_log_info, val_log_info 670│ 671█parser = argparse.ArgumentParser(description='Run experiment') 672│parser.add_argument('--out_dir', type=str, default='run_0', help='Output directory') 673│args = parser.parse_args() 674│ 675│if __name__ == "__main__": 676│ num_seeds = { 677│ "shakespeare_char": 3, 678│ "enwik8": 1, 679│ "text8": 1, ...⋮... 685│ for dataset in ["shakespeare_char", "enwik8", "text8"]: 686│ final_info_list = [] ...⋮... 691│ all_results[f"{dataset}_{seed_offset}_val_info"] = val_info 692│ final_info_list.append(final_info) 693│ final_info_dict = {k: [d[k] for d in final_info_list] for k in final_info_list[0].keys()} 694█ means = {f"{k}_mean": np.mean(v) for k, v in final_info_dict.items()} 695█ stderrs = {f"{k}_stderr": np.std(v) / len(v) for k, v in final_info_dict.items()} 696│ final_infos[dataset] = { 697│ "means": means, 698│ "stderrs": stderrs, ...⋮... 703│ json.dump(final_infos, f) 704│ 705│ with open(os.path.join(out_dir, "all_results.npy"), "wb") as f: 706█ np.save(f, all_results) To fix the errors, we need to ensure that the necessary imports for torch, torch.nn, torch.nn.functional, numpy, and argparse are included in experiment.py. Here are the SEARCH/REPLACE blocks to fix the errors: experiment.py <<<<<<< SEARCH import os import time import math import pickle import inspect import json from contextlib import nullcontext from dataclasses import dataclass from q_learning_agent import QLearningAgent ======= import os import time import math import pickle import inspect import json import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import argparse from contextlib import nullcontext from dataclasses import dataclass from q_learning_agent import QLearningAgent >>>>>>> REPLACE Please apply these changes and then re-run the command python experiment.py --out_dir=run_1. 18550 prompt tokens, 200 completion tokens, $0.095750 cost Applied edit to experiment.py To fix the errors, we need to ensure that the necessary imports for `torch`, `torch.nn`, `torch.nn.functional`, `numpy`, and `argparse` are included in `experiment.py`. Here are the *SEARCH/REPLACE* blocks to fix the errors: experiment.py ```python <<<<<<< SEARCH import os import time import math import pickle import inspect import json from contextlib import nullcontext from dataclasses import dataclass from q_learning_agent import QLearningAgent ======= import os import time import math import pickle import inspect import json import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import argparse from contextlib import nullcontext from dataclasses import dataclass from q_learning_agent import QLearningAgent >>>>>>> REPLACE ``` Please apply these changes and then re-run the command `python experiment.py --out_dir=run_1`. Traceback (most recent call last): File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 693, in <module> final_info, train_info, val_info = train(dataset, out_dir, seed_offset) File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 527, in train state = q_agent.get_state(losses["val"], lr) File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/q_learning_agent.py", line 11, in get_state return (round(val_loss, 2), round(current_lr, 5)) TypeError: type Tensor doesn't define __round__ method Run 1 failed with return code 1 Run failed with the following error Traceback (most recent call last): File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 693, in <module> final_info, train_info, val_info = train(dataset, out_dir, seed_offset) File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 527, in train state = q_agent.get_state(losses["val"], lr) File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/q_learning_agent.py", line 11, in get_state return (round(val_loss, 2), round(current_lr, 5)) TypeError: type Tensor doesn't define __round__ method To fix the error, we need to convert the val_loss tensor to a Python float before rounding it. We can do this by calling the .item() method on the tensor. Here are the necessary changes: q_learning_agent.py <<<<<<< SEARCH return (round(val_loss, 2), round(current_lr, 5)) ======= return (round(val_loss.item(), 2), round(current_lr, 5)) >>>>>>> REPLACE This change will ensure that val_loss is converted to a float before rounding, which should resolve the TypeError. 10543 prompt tokens, 122 completion tokens, $0.054545 cost Applied edit to q_learning_agent.py To fix the error, we need to convert the `val_loss` tensor to a Python float before rounding it. We can do this by calling the `.item()` method on the tensor. Here are the necessary changes: q_learning_agent.py ```python <<<<<<< SEARCH return (round(val_loss, 2), round(current_lr, 5)) ======= return (round(val_loss.item(), 2), round(current_lr, 5)) >>>>>>> REPLACE ``` This change will ensure that `val_loss` is converted to a float before rounding, which should resolve the `TypeError`. First, let's update the notes.txt file to include the results and description for Run 1. notes.txt <<<<<<< SEARCH ## Run 0: Baseline Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}} Description: Baseline results. ======= ## Run 0: Baseline Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}} Description: Baseline results. ## Run 1: Q-learning with initial learning rate adaptation Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}} Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the curre state (validation loss, current learning rate) and used a reward signal derive from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at eac evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE Next, let's implement the next experiment. For this experiment, we will use a different initial learning rate to see how it affects the Q-learning adaptation. We will set the initial learning rate to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. experiment.py <<<<<<< SEARCH learning_rate = ( 1e-3 if dataset == "shakespeare_char" else 5e-4 ) ======= learning_rate = ( 2e-3 if dataset == "shakespeare_char" else 1e-3 ) >>>>>>> REPLACE Now, you can run the next experiment with the command: python experiment.py --out_dir=run_2 11043 prompt tokens, 973 completion tokens, $0.069810 cost Applied edit to experiment.py Applied edit to notes.txt First, let's update the `notes.txt` file to include the results and description for Run 1. notes.txt ```python <<<<<<< SEARCH ## Run 0: Baseline Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}} Description: Baseline results. ======= ## Run 0: Baseline Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}} Description: Baseline results. ## Run 1: Q-learning with initial learning rate adaptation Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}} Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE ``` Next, let's implement the next experiment. For this experiment, we will use a different initial learning rate to see how it affects the Q-learning adaptation. We will set the initial learning rate to `2e-3` for `shakespeare_char` and `1e-3` for `enwik8` and `text8`. experiment.py ```python <<<<<<< SEARCH learning_rate = ( 1e-3 if dataset == "shakespeare_char" else 5e-4 ) ======= learning_rate = ( 2e-3 if dataset == "shakespeare_char" else 1e-3 ) >>>>>>> REPLACE ``` Now, you can run the next experiment with the command: ```sh python experiment.py --out_dir=run_2 ``` First, let's update the notes.txt file to include the results and description for Run 2. notes.txt <<<<<<< SEARCH ## Run 1: Q-learning with initial learning rate adaptation Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}} Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the curre state (validation loss, current learning rate) and used a reward signal derive from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at eac evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ======= ## Run 1: Q-learning with initial learning rate adaptation Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}} Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the curre state (validation loss, current learning rate) and used a reward signal derive from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at eac evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ## Run 2: Q-learning with different initial learning rates Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}} Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate wa set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char enwik8, text8). >>>>>>> REPLACE Next, let's implement the next experiment. For this experiment, we will use a different reward signal for the Q-learning agent. Instead of using the negative validation loss as the reward, we will use the improvement in validation loss as the reward. q_learning_agent.py <<<<<<< SEARCH reward = -losses["val"] # Reward is negative validation loss ======= reward = best_val_loss - losses["val"] # Reward is improvement in validation loss >>>>>>> REPLACE Now, you can run the next experiment with the command: python experiment.py --out_dir=run_3 12718 prompt tokens, 1173 completion tokens, $0.081185 cost Applied edit to q_learning_agent.py Applied edit to notes.txt First, let's update the `notes.txt` file to include the results and description for Run 2. notes.txt ```python <<<<<<< SEARCH ## Run 1: Q-learning with initial learning rate adaptation Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}} Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ======= ## Run 1: Q-learning with initial learning rate adaptation Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}} Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ## Run 2: Q-learning with different initial learning rates Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}} Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate was set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE ``` Next, let's implement the next experiment. For this experiment, we will use a different reward signal for the Q-learning agent. Instead of using the negative validation loss as the reward, we will use the improvement in validation loss as the reward. q_learning_agent.py ```python <<<<<<< SEARCH reward = -losses["val"] # Reward is negative validation loss ======= reward = best_val_loss - losses["val"] # Reward is improvement in validation loss >>>>>>> REPLACE ``` Now, you can run the next experiment with the command: ```sh python experiment.py --out_dir=run_3 ``` Let's first update the notes.txt file with the results and description for Run 3. notes.txt <<<<<<< SEARCH Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ▌ ▌ ▌ ▌ ▌ ▌ ▌ REPLACE Next, let's propose the next experiment. For Run 4, we will use a different exploration strategy for the Q-learning agent. Instead of using a fixed epsilo value for exploration, we will use an epsilon decay strategy where epsilon decreases over time. Here are the changes needed: q_learning_agent.py ```python <<<<<<< SEARCH self.epsilon = epsilon ======= self.epsilon = epsilon self.initial_epsilon = epsilon self.epsilon_decay = 0.99 # Decay rate for epsilon >>>>>>> REPLACE q_learning_agent.py <<<<<<< SEARCH if np.random.rand() < self.epsilon: ======= if np.random.rand() < self.epsilon: self.epsilon *= self.epsilon_decay # Decay epsilon >>>>>>> REPLACE Now, you can run the next experiment with the command: python experiment.py --out_dir=run_4 11638 prompt tokens, 584 completion tokens, $0.066950 cost The LLM did not conform to the edit format. https://aider.chat/docs/troubleshooting/edit-errors.html Let's first update the `notes.txt` file with the results and description for Run 3. notes.txt ```python <<<<<<< SEARCH ``` ## Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE ^^^ Expected `=======` not >>>>>>> REPLACE Let's update the notes.txt file with the results and description for Run 3 correctly. notes.txt <<<<<<< SEARCH ## Run 2: Q-learning with different initial learning rates Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}} Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate wa set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char enwik8, text8). ======= ## Run 2: Q-learning with different initial learning rates Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}} Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate wa set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char enwik8, text8). ## Run 3: Q-learning with reward signal based on improvement in validation los Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. Th Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived fr the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning ra at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE Next, let's propose the next experiment. For Run 4, we will use a different exploration strategy for the Q-learning agent. Instead of using a fixed epsilon value for exploration, we will use an epsilon decay strategy where epsilon decreases over time. Here are the changes needed: q_learning_agent.py <<<<<<< SEARCH self.epsilon = epsilon ======= self.epsilon = epsilon self.initial_epsilon = epsilon self.epsilon_decay = 0.99 # Decay rate for epsilon >>>>>>> REPLACE q_learning_agent.py <<<<<<< SEARCH if np.random.rand() < self.epsilon: ======= if np.random.rand() < self.epsilon: self.epsilon *= self.epsilon_decay # Decay epsilon >>>>>>> REPLACE Now, you can run the next experiment with the command: python experiment.py --out_dir=run_4 12629 prompt tokens, 1303 completion tokens, $0.082690 cost Applied edit to q_learning_agent.py Applied edit to notes.txt Let's update the `notes.txt` file with the results and description for Run 3 correctly. notes.txt ```python <<<<<<< SEARCH ## Run 2: Q-learning with different initial learning rates Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}} Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate was set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ======= ## Run 2: Q-learning with different initial learning rates Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}} Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate was set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ## Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE ``` Next, let's propose the next experiment. For Run 4, we will use a different exploration strategy for the Q-learning agent. Instead of using a fixed epsilon value for exploration, we will use an epsilon decay strategy where epsilon decreases over time. Here are the changes needed: q_learning_agent.py ```python <<<<<<< SEARCH self.epsilon = epsilon ======= self.epsilon = epsilon self.initial_epsilon = epsilon self.epsilon_decay = 0.99 # Decay rate for epsilon >>>>>>> REPLACE ``` q_learning_agent.py ```python <<<<<<< SEARCH if np.random.rand() < self.epsilon: ======= if np.random.rand() < self.epsilon: self.epsilon *= self.epsilon_decay # Decay epsilon >>>>>>> REPLACE ``` Now, you can run the next experiment with the command: ```bash python experiment.py --out_dir=run_4 ``` Let's first update the notes.txt file with the results and description for Run 4. notes.txt <<<<<<< SEARCH Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). Run 4: Q-learning with epsilon decay strategy Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894, 'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean': 79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean': 0.9917866587638855, 'total_train_time_mean': 852.1484353542328, 'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8': {'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean': 0.9615200161933899, 'total_train_time_mean': 846.4471461772919, 'avg_inference_tokens_per_second_mean': 613.2623906747798}} Description: This run implemented Q-learning for dynamic learning rate adaptation with an epsilon decay strategy. Instead of using a fixed epsilon value for exploration, an epsilon decay strategy was used where epsilon decreases over time. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). Next, let's propose the next experiment. We will use a different discount factor (gamma) for the Q-learning agent to see how it affects the learning rate adaptation. q_learning_agent.py <<<<<<< SEARCH def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1): ======= def __init__(self, lr=0.1, gamma=0.95, epsilon=0.1): >>>>>>> REPLACE Now, you can run the next experiment with the command: python experiment.py --out_dir=run_5 12168 prompt tokens, 864 completion tokens, $0.073800 cost The LLM did not conform to the edit format. https://aider.chat/docs/troubleshooting/edit-errors.html Let's first update the `notes.txt` file with the results and description for Run 4. notes.txt ```python <<<<<<< SEARCH ``` ## Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ## Run 4: Q-learning with epsilon decay strategy Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894, 'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean': 79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean': 0.9917866587638855, 'total_train_time_mean': 852.1484353542328, 'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8': {'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean': 0.9615200161933899, 'total_train_time_mean': 846.4471461772919, 'avg_inference_tokens_per_second_mean': 613.2623906747798}} Description: This run implemented Q-learning for dynamic learning rate adaptation with an epsilon decay strategy. Instead of using a fixed epsilon value for exploration, an epsilon decay strategy was used where epsilon decreases over time. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ``` ``` Next, let's propose the next experiment. We will use a different discount factor (gamma) for the Q-learning agent to see how it affects the learning rate adaptation. q_learning_agent.py ```python <<<<<<< SEARCH ^^^ Expected `=======` not <<<<<<< SEARCH Let's first update the notes.txt file with the results and description for Run 4. notes.txt <<<<<<< SEARCH ## Run 3: Q-learning with reward signal based on improvement in validation los Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. Th Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived fr the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning ra at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ======= ## Run 3: Q-learning with reward signal based on improvement in validation los Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. Th Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived fr the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning ra at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ## Run 4: Q-learning with epsilon decay strategy Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894, 'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean': 79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean': 0.9917866587638855, 'total_train_time_mean': 852.1484353542328, 'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8': {'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean': 0.9615200161933899, 'total_train_time_mean': 846.4471461772919, 'avg_inference_tokens_per_second_mean': 613.2623906747798}} Description: This run implemented Q-learning for dynamic learning rate adaptation with an epsilon decay strategy. Instead of using a fixed epsilon value for exploration, an epsilon decay strategy was used where epsilon decreases over time. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The trainin loop was modified to incorporate the RL agent's adjustments to the learning ra at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE Next, let's propose the next experiment. We will use a different discount factor (gamma) for the Q-learning agent to see how it affects the learning rate adaptation. q_learning_agent.py <<<<<<< SEARCH def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1): ======= def __init__(self, lr=0.1, gamma=0.95, epsilon=0.1): >>>>>>> REPLACE Now, you can run the next experiment with the command: python experiment.py --out_dir=run_5 13832 prompt tokens, 1218 completion tokens, $0.087430 cost Applied edit to q_learning_agent.py Applied edit to notes.txt Let's first update the `notes.txt` file with the results and description for Run 4. notes.txt ```python <<<<<<< SEARCH ## Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ======= ## Run 3: Q-learning with reward signal based on improvement in validation loss Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). ## Run 4: Q-learning with epsilon decay strategy Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894, 'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean': 79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean': 0.9917866587638855, 'total_train_time_mean': 852.1484353542328, 'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8': {'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean': 0.9615200161933899, 'total_train_time_mean': 846.4471461772919, 'avg_inference_tokens_per_second_mean': 613.2623906747798}} Description: This run implemented Q-learning for dynamic learning rate adaptation with an epsilon decay strategy. Instead of using a fixed epsilon value for exploration, an epsilon decay strategy was used where epsilon decreases over time. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8). >>>>>>> REPLACE ``` Next, let's propose the next experiment. We will use a different discount factor (gamma) for the Q-learning agent to see how it affects the learning rate adaptation. q_learning_agent.py ```python <<<<<<< SEARCH def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1): ======= def __init__(self, lr=0.1, gamma=0.95, epsilon=0.1): >>>>>>> REPLACE ``` Now, you can run the next experiment with the command: ```sh python experiment.py --out_dir=run_5 ``` To modify plot.py to generate the most relevant plots for the final writeup and fill in the "labels" dictionary with the correct names for each run, we will: 1 Update the labels dictionary to include all relevant runs. 2 Ensure that the plots are generated for each dataset and saved with appropriate filenames. Here are the SEARCH/REPLACE blocks: plot.py <<<<<<< SEARCH labels = { "run_0": "Baselines", ======= labels = { "run_0": "Baseline", "run_1": "Q-learning with initial learning rate adaptation", "run_2": "Q-learning with different initial learning rates", "run_3": "Q-learning with reward signal based on improvement in validation loss", "run_4": "Q-learning with epsilon decay strategy", >>>>>>> REPLACE } plot.py <<<<<<< SEARCH # Plot 1: Line plot of training loss for each dataset across the runs with labels for dataset in datasets: plt.figure(figsize=(10, 6)) for i, run in enumerate(runs): iters = results_info[run][dataset]["iters"] mean = results_info[run][dataset]["train_loss"] sterr = results_info[run][dataset]["train_loss_sterr"] plt.plot(iters, mean, label=labels[run], color=colors[i]) plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2) plt.title(f"Training Loss Across Runs for {dataset} Dataset") plt.xlabel("Iteration") plt.ylabel("Training Loss") plt.legend() plt.grid(True, which="both", ls="-", alpha=0.2) plt.tight_layout() plt.savefig(f"train_loss_{dataset}.png") plt.close() # Plot 2: Line plot of validation loss for each dataset across the runs with labels for dataset in datasets: plt.figure(figsize=(10, 6)) for i, run in enumerate(runs): iters = results_info[run][dataset]["iters"] mean = results_info[run][dataset]["val_loss"] sterr = results_info[run][dataset]["val_loss_sterr"] plt.plot(iters, mean, label=labels[run], color=colors[i]) plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2) plt.title(f"Validation Loss Across Runs for {dataset} Dataset") plt.xlabel("Iteration") plt.ylabel("Validation Loss") plt.legend() plt.grid(True, which="both", ls="-", alpha=0.2) plt.tight_layout() plt.savefig(f"val_loss_{dataset}.png") plt.close() ======= # Plot 1: Line plot of training loss for each dataset across the runs with labels for dataset in datasets: plt.figure(figsize=(10, 6)) for i, run in enumerate(runs): iters = results_info[run][dataset]["iters"] mean = results_info[run][dataset]["train_loss"] sterr = results_info[run][dataset]["train_loss_sterr"] plt.plot(iters, mean, label=labels[run], color=colors[i]) plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2) plt.title(f"Training Loss Across Runs for {dataset} Dataset") plt.xlabel("Iteration") plt.ylabel("Training Loss") plt.legend() plt.grid(True, which="both", ls="-", alpha=0.2) plt.tight_layout() plt.savefig(f"train_loss_{dataset}.png") plt.close() # Plot 2: Line plot of validation loss for each dataset across the runs with labels for dataset in datasets: plt.figure(figsize=(10, 6)) for i, run in enumerate(runs): iters = results_info[run][dataset]["iters"] mean = results_info[run][dataset]["val_loss"] sterr = results_info[run][dataset]["val_loss_sterr"] plt.plot(iters, mean, label=labels[run], color=colors[i]) plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2) plt.title(f"Validation Loss Across Runs for {dataset} Dataset") plt.xlabel("Iteration") plt.ylabel("Validation Loss") plt.legend() plt.grid(True, which="both", ls="-", alpha=0.2) plt.tight_layout() plt.savefig(f"val_loss_{dataset}.png") plt.close() >>>>>>> REPLACE These changes will ensure that the plots are generated for each dataset and saved with appropriate filenames, and the labels dictionary will include all relevant runs. 12063 prompt tokens, 1043 completion tokens, $0.075960 cost Applied edit to plot.py /home/anon/ai_scientist/venv/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3504: RuntimeWarning: Mean of empty slice. return _methods._mean(a, axis=axis, dtype=dtype, /home/anon/ai_scientist/venv/lib/python3.10/site-packages/numpy/core/_methods.py:129: RuntimeWarning: invalid value encountered in scalar divide ret = ret.dtype.type(ret / rcount) Here are the changes to notes.txt to include descriptions of what each plot shows along with the filename of the figure: notes.txt <<<<<<< SEARCH ## Run 0: Baseline Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}} Description: Baseline results. ======= ## Run 0: Baseline Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}} Description: Baseline results. Plot Descriptions: 1. Training Loss Across Runs for shakespeare_char Dataset: This plot shows the training loss over iterations for the shakespeare_char dataset across differen runs. It helps in understanding how the training loss decreases over time for each run. Filename: train_loss_shakespeare_char.png 2. Validation Loss Across Runs for shakespeare_char Dataset: This plot shows t validation loss over iterations for the shakespeare_char dataset across different runs. It helps in understanding how the validation loss decreases ov time for each run. Filename: val_loss_shakespeare_char.png 3. Training Loss Across Runs for enwik8 Dataset: This plot shows the training loss over iterations for the enwik8 dataset across different runs. It helps in understanding how the training loss decreases over time for each run. Filename train_loss_enwik8.png 4. Validation Loss Across Runs for enwik8 Dataset: This plot shows the validation loss over iterations for the enwik8 dataset across different runs. helps in understanding how the validation loss decreases over time for each ru Filename: val_loss_enwik8.png 5. Training Loss Across Runs for text8 Dataset: This plot shows the training loss over iterations for the text8 dataset across different runs. It helps in understanding how the training loss decreases over time for each run. Filename train_loss_text8.png 6. Validation Loss Across Runs for text8 Dataset: This plot shows the validati loss over iterations for the text8 dataset across different runs. It helps in understanding how the validation loss decreases over time for each run. Filename: val_loss_text8.png >>>>>>> REPLACE This update will ensure that the notes.txt file contains detailed descriptions of what each plot shows along with the filenames of the figures. 13240 prompt tokens, 834 completion tokens, $0.078710 cost Applied edit to notes.txt |