File size: 119,893 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
2024-07-25 21:41:45
*Starting idea: 20240725_214144_rl_lr_adaptation*
2024-07-25 21:41:45
*Starting Experiments*
                                Experiment Plan                                 

We will conduct the following experiments to evaluate the effectiveness of using
Q-learning for dynamic learning rate adaptation in transformer training:        

 1 Run 1: Q-learning with initial learning rate 1e-3                            
    • Dataset: shakespeare_char                                                 
    • Initial learning rate: 1e-3                                               
    • Q-learning parameters:                                                    
       • Learning rate for Q-learning: 0.1                                      
       • Discount factor: 0.9                                                   
       • Exploration rate: 0.1                                                  
 2 Run 2: Q-learning with initial learning rate 5e-4                            
    • Dataset: enwik8                                                           
    • Initial learning rate: 5e-4                                               
    • Q-learning parameters:                                                    
       • Learning rate for Q-learning: 0.1                                      
       • Discount factor: 0.9                                                   
       • Exploration rate: 0.1                                                  
 3 Run 3: Q-learning with initial learning rate 1e-3                            
    • Dataset: text8                                                            
    • Initial learning rate: 1e-3                                               
    • Q-learning parameters:                                                    
       • Learning rate for Q-learning: 0.1                                      
       • Discount factor: 0.9                                                   
       • Exploration rate: 0.1                                                  
 4 Run 4: Q-learning with initial learning rate 5e-4                            
    • Dataset: shakespeare_char                                                 
    • Initial learning rate: 5e-4                                               
    • Q-learning parameters:                                                    
       • Learning rate for Q-learning: 0.1                                      
       • Discount factor: 0.9                                                   
       • Exploration rate: 0.1                                                  
 5 Run 5: Q-learning with initial learning rate 1e-3                            
    • Dataset: enwik8                                                           
    • Initial learning rate: 1e-3                                               
    • Q-learning parameters:                                                    
       • Learning rate for Q-learning: 0.1                                      
       • Discount factor: 0.9                                                   
       • Exploration rate: 0.1                                                  

                              Implementation Steps                              

 1 Implement Q-learning agent: Create a Q-learning agent that will adjust the   
   learning rate based on the current state (validation loss, current learning  
   rate).                                                                       
 2 Integrate Q-learning agent into training loop: Modify the training loop to   
   incorporate the Q-learning agent's adjustments to the learning rate at each  
   evaluation interval.                                                         
 3 Run experiments: Execute the planned experiments and compare the results with
   the baseline.                                                                

                       Step 1: Implement Q-learning Agent                       

Let's start by implementing the Q-learning agent.                               

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
 =======                                                                        
 import numpy as np                                                             
                                                                                
 class QLearningAgent:                                                          
     def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1):                        
         self.lr = lr                                                           
         self.gamma = gamma                                                     
         self.epsilon = epsilon                                                 
         self.q_table = {}                                                      
                                                                                
     def get_state(self, val_loss, current_lr):                                 
         return (round(val_loss, 2), round(current_lr, 5))                      
                                                                                
     def choose_action(self, state):                                            
         if np.random.rand() < self.epsilon:                                    
             return np.random.choice([-1, 0, 1])                                
         if state not in self.q_table:                                          
             self.q_table[state] = [0, 0, 0]                                    
         return np.argmax(self.q_table[state]) - 1                              
                                                                                
     def update_q_values(self, state, action, reward, next_state):              
         if state not in self.q_table:                                          
             self.q_table[state] = [0, 0, 0]                                    
         if next_state not in self.q_table:                                     
             self.q_table[next_state] = [0, 0, 0]                               
         best_next_action = np.argmax(self.q_table[next_state])                 
         td_target = reward + self.gamma *                                      
 self.q_table[next_state][best_next_action]                                     
         td_error = td_target - self.q_table[state][action + 1]                 
         self.q_table[state][action + 1] += self.lr * td_error                  
 >>>>>>> REPLACE                                                                
                                                                                

             Step 2: Integrate Q-learning Agent into Training Loop              

Next, we will modify the training loop in experiment.py to incorporate the      
Q-learning agent's adjustments to the learning rate at each evaluation interval.

experiment.py                                                                   

                                                                                
 <<<<<<< SEARCH                                                                 
 import numpy as np                                                             
 import torch                                                                   
 import torch.nn as nn                                                          
 from torch.nn import functional as F                                           
 import argparse                                                                
 =======                                                                        
 from q_learning_agent import QLearningAgent                                    
 >>>>>>> REPLACE                                                                
                                                                                

experiment.py                                                                   

                                                                                
 <<<<<<< SEARCH                                                                 
     # model init                                                               
 =======                                                                        
     # Q-learning agent init                                                    
     q_agent = QLearningAgent(lr=0.1, gamma=0.9, epsilon=0.1)                   
 >>>>>>> REPLACE                                                                
                                                                                

experiment.py                                                                   

                                                                                
 <<<<<<< SEARCH                                                                 
             val_log_info.append(                                               
 =======                                                                        
             # Q-learning: Update learning rate based on Q-learning agent       
             state = q_agent.get_state(losses["val"], lr)                       
             action = q_agent.choose_action(state)                              
             lr = max(min_lr, lr * (1 + action * 0.1))  # Adjust learning rate  
             next_state = q_agent.get_state(losses["val"], lr)                  
             reward = -losses["val"]  # Reward is negative validation loss      
             q_agent.update_q_values(state, action, reward, next_state)         
                                                                                
             val_log_info.append(                                               
 >>>>>>> REPLACE                                                                
                                                                                

                            Step 3: Run Experiments                             

After implementing the Q-learning agent and integrating it into the training    
loop, we will run the experiments using the command python experiment.py        
--out_dir=run_i where i is the run number.                                      

Please proceed to run the first experiment using the command:                   

                                                                                
 python experiment.py --out_dir=run_1                                           
                                                                                

Once the first experiment is complete, we can proceed with the subsequent       
experiments.                                                                    
10207 prompt tokens, 1220 completion tokens, $0.069335 cost

Applied edit to q_learning_agent.py
Applied edit to experiment.py

# Fix any errors below, if possible.

## Running: /home/anon/ai_scientist/venv/bin/python3 -m flake8 
--select=E9,F821,F823,F831,F406,F407,F701,F702,F704,F706 --show-source 
--isolated experiment.py

experiment.py:12:17: F821 undefined name 'nn'
class LayerNorm(nn.Module):
                ^
experiment.py:17:23: F821 undefined name 'nn'
        self.weight = nn.Parameter(torch.ones(ndim))
                      ^
experiment.py:17:36: F821 undefined name 'torch'
        self.weight = nn.Parameter(torch.ones(ndim))
                                   ^
experiment.py:18:21: F821 undefined name 'nn'
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
                    ^
experiment.py:18:34: F821 undefined name 'torch'
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
                                 ^
experiment.py:21:16: F821 undefined name 'F'
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 
1e-5)
               ^
experiment.py:24:27: F821 undefined name 'nn'
class CausalSelfAttention(nn.Module):
                          ^
experiment.py:30:23: F821 undefined name 'nn'
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, 
bias=config.bias)
                      ^
experiment.py:32:23: F821 undefined name 'nn'
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
                      ^
experiment.py:34:29: F821 undefined name 'nn'
        self.attn_dropout = nn.Dropout(config.dropout)
                            ^
experiment.py:35:30: F821 undefined name 'nn'
        self.resid_dropout = nn.Dropout(config.dropout)
                             ^
experiment.py:40:30: F821 undefined name 'torch'
        self.flash = hasattr(torch.nn.functional, 
"scaled_dot_product_attention")
                             ^
experiment.py:48:17: F821 undefined name 'torch'
                torch.tril(torch.ones(config.block_size, 
config.block_size)).view(
                ^
experiment.py:48:28: F821 undefined name 'torch'
                torch.tril(torch.ones(config.block_size, 
config.block_size)).view(
                           ^
experiment.py:73:17: F821 undefined name 'torch'
            y = torch.nn.functional.scaled_dot_product_attention(
                ^
experiment.py:85:19: F821 undefined name 'F'
            att = F.softmax(att, dim=-1)
                  ^
experiment.py:97:11: F821 undefined name 'nn'
class MLP(nn.Module):
          ^
experiment.py:101:21: F821 undefined name 'nn'
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, 
bias=config.bias)
                    ^
experiment.py:102:21: F821 undefined name 'nn'
        self.gelu = nn.GELU()
                    ^
experiment.py:103:23: F821 undefined name 'nn'
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, 
bias=config.bias)
                      ^
experiment.py:104:24: F821 undefined name 'nn'
        self.dropout = nn.Dropout(config.dropout)
                       ^
experiment.py:114:13: F821 undefined name 'nn'
class Block(nn.Module):
            ^
experiment.py:144:11: F821 undefined name 'nn'
class GPT(nn.Module):
          ^
experiment.py:152:28: F821 undefined name 'nn'
        self.transformer = nn.ModuleDict(
                           ^
experiment.py:154:21: F821 undefined name 'nn'
                wte=nn.Embedding(config.vocab_size, config.n_embd),
                    ^
experiment.py:155:21: F821 undefined name 'nn'
                wpe=nn.Embedding(config.block_size, config.n_embd),
                    ^
experiment.py:156:22: F821 undefined name 'nn'
                drop=nn.Dropout(config.dropout),
                     ^
experiment.py:157:19: F821 undefined name 'nn'
                h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
                  ^
experiment.py:161:24: F821 undefined name 'nn'
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
                       ^
experiment.py:175:17: F821 undefined name 'torch'
                torch.nn.init.normal_(
                ^
experiment.py:195:31: F821 undefined name 'nn'
        if isinstance(module, nn.Linear):
                              ^
experiment.py:196:13: F821 undefined name 'torch'
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            ^
experiment.py:198:17: F821 undefined name 'torch'
                torch.nn.init.zeros_(module.bias)
                ^
experiment.py:199:33: F821 undefined name 'nn'
        elif isinstance(module, nn.Embedding):
                                ^
experiment.py:200:13: F821 undefined name 'torch'
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            ^
experiment.py:208:15: F821 undefined name 'torch'
        pos = torch.arange(0, t, dtype=torch.long, device=device)  # shape (t)
              ^
experiment.py:208:40: F821 undefined name 'torch'
        pos = torch.arange(0, t, dtype=torch.long, device=device)  # shape (t)
                                       ^
experiment.py:221:20: F821 undefined name 'F'
            loss = F.cross_entropy(
                   ^
experiment.py:239:39: F821 undefined name 'nn'
        self.transformer.wpe.weight = nn.Parameter(
                                      ^
experiment.py:268:56: F821 undefined name 'torch'
        fused_available = "fused" in 
inspect.signature(torch.optim.AdamW).parameters
                                                       ^
experiment.py:271:21: F821 undefined name 'torch'
        optimizer = torch.optim.AdamW(
                    ^
experiment.py:278:6: F821 undefined name 'torch'
    @torch.no_grad()
     ^
experiment.py:298:24: F821 undefined name 'torch'
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                       ^
experiment.py:301:21: F821 undefined name 'F'
            probs = F.softmax(logits, dim=-1)
                    ^
experiment.py:303:24: F821 undefined name 'torch'
            idx_next = torch.multinomial(probs, num_samples=1)
                       ^
experiment.py:305:19: F821 undefined name 'torch'
            idx = torch.cat((idx, idx_next), dim=1)
                  ^
experiment.py:351:27: F821 undefined name 'torch'
    dtype = 'bfloat16' if torch.cuda.is_available() and 
torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 
'float16', the latter will auto implement a GradScaler
                          ^
experiment.py:351:57: F821 undefined name 'torch'
    dtype = 'bfloat16' if torch.cuda.is_available() and 
torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 
'float16', the latter will auto implement a GradScaler
                                                        ^
experiment.py:363:5: F821 undefined name 'torch'
    torch.manual_seed(1337 + seed_offset)
    ^
experiment.py:364:5: F821 undefined name 'torch'
    torch.backends.cuda.matmul.allow_tf32 = True  # allow tf32 on matmul
    ^
experiment.py:365:5: F821 undefined name 'torch'
    torch.backends.cudnn.allow_tf32 = True  # allow tf32 on cudnn
    ^
experiment.py:369:20: F821 undefined name 'torch'
        "float32": torch.float32,
                   ^
experiment.py:370:21: F821 undefined name 'torch'
        "bfloat16": torch.bfloat16,
                    ^
experiment.py:371:20: F821 undefined name 'torch'
        "float16": torch.float16,
                   ^
experiment.py:376:14: F821 undefined name 'torch'
        else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
             ^
experiment.py:387:20: F821 undefined name 'np'
            data = np.memmap(os.path.join(data_dir, "train.bin"), 
dtype=np.uint16, mode="r")
                   ^
experiment.py:387:73: F821 undefined name 'np'
            data = np.memmap(os.path.join(data_dir, "train.bin"), 
dtype=np.uint16, mode="r")
                                                                        ^
experiment.py:389:20: F821 undefined name 'np'
            data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16,
mode="r")
                   ^
experiment.py:389:71: F821 undefined name 'np'
            data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16,
mode="r")
                                                                      ^
experiment.py:390:14: F821 undefined name 'torch'
        ix = torch.randint(len(data) - block_size, (batch_size,))
             ^
experiment.py:391:13: F821 undefined name 'torch'
        x = torch.stack(
            ^
experiment.py:392:14: F821 undefined name 'torch'
            [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i
in ix]
             ^
experiment.py:392:65: F821 undefined name 'np'
            [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i
in ix]
                                                                ^
experiment.py:394:13: F821 undefined name 'torch'
        y = torch.stack(
            ^
experiment.py:396:17: F821 undefined name 'torch'
                torch.from_numpy((data[i + 1 : i + 1 + 
block_size]).astype(np.int64))
                ^
experiment.py:396:76: F821 undefined name 'np'
                torch.from_numpy((data[i + 1 : i + 1 + 
block_size]).astype(np.int64))
                                                                           ^
experiment.py:451:14: F821 undefined name 'torch'
    scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16"))
             ^
experiment.py:463:17: F821 undefined name 'torch'
        model = torch.compile(model)  # requires PyTorch 2.0
                ^
experiment.py:467:6: F821 undefined name 'torch'
    @torch.no_grad()
     ^
experiment.py:472:22: F821 undefined name 'torch'
            losses = torch.zeros(eval_iters)
                     ^
experiment.py:548:21: F821 undefined name 'torch'
                    torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt"))
                    ^
experiment.py:567:13: F821 undefined name 'torch'
            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
            ^
experiment.py:632:10: F821 undefined name 'torch'
    x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
         ^
experiment.py:632:40: F821 undefined name 'torch'
    x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
                                       ^
experiment.py:637:10: F821 undefined name 'torch'
    with torch.no_grad():
         ^
experiment.py:671:10: F821 undefined name 'argparse'
parser = argparse.ArgumentParser(description='Run experiment')
         ^
experiment.py:694:31: F821 undefined name 'np'
        means = {f"{k}_mean": np.mean(v) for k, v in final_info_dict.items()}
                              ^
experiment.py:695:35: F821 undefined name 'np'
        stderrs = {f"{k}_stderr": np.std(v) / len(v) for k, v in 
final_info_dict.items()}
                                  ^
experiment.py:706:9: F821 undefined name 'np'
        np.save(f, all_results)
        ^

## See relevant lines below marked with █.

experiment.py:
...⋮...
  9│from q_learning_agent import QLearningAgent
 10│
 11│# --- BEGIN model.py ---
 12█class LayerNorm(nn.Module):
 13│    """LayerNorm but with an optional bias. PyTorch doesn't support simply 
bias=False"""
 14│
 15│    def __init__(self, ndim, bias):
 16│        super().__init__()
 17█        self.weight = nn.Parameter(torch.ones(ndim))
 18█        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
 19│
 20│    def forward(self, input):
 21█        return F.layer_norm(input, self.weight.shape, self.weight, 
self.bias, 1e-5)
 22│
 23│
 24█class CausalSelfAttention(nn.Module):
 25│
 26│    def __init__(self, config):
 27│        super().__init__()
 28│        assert config.n_embd % config.n_head == 0
 29│        # key, query, value projections for all heads, but in a batch
 30█        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, 
bias=config.bias)
 31│        # output projection
 32█        self.c_proj = nn.Linear(config.n_embd, config.n_embd, 
bias=config.bias)
 33│        # regularization
 34█        self.attn_dropout = nn.Dropout(config.dropout)
 35█        self.resid_dropout = nn.Dropout(config.dropout)
 36│        self.n_head = config.n_head
 37│        self.n_embd = config.n_embd
 38│        self.dropout = config.dropout
 39│        # flash attention make GPU go brrrrr but support is only in PyTorch 
>= 2.0
 40█        self.flash = hasattr(torch.nn.functional, 
"scaled_dot_product_attention")
 41│        if not self.flash:
 42│            print(
 43│                "WARNING: using slow attention. Flash Attention requires 
PyTorch >= 2.0"
 44│            )
 45│            # causal mask to ensure that attention is only applied to the 
left in the input sequence
 46│            self.register_buffer(
 47│                "bias",
 48█                torch.tril(torch.ones(config.block_size, 
config.block_size)).view(
 49│                    1, 1, config.block_size, config.block_size
 50│                ),
 51│            )
 52│
 53│    def forward(self, x):
 54│        B, T, C = (
 55│            x.size()
...⋮...
 70│        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, 
T) -> (B, nh, T, T)
 71│        if self.flash:
 72│            # efficient attention using Flash Attention CUDA kernels
 73█            y = torch.nn.functional.scaled_dot_product_attention(
 74│                q,
 75│                k,
 76│                v,
 77│                attn_mask=None,
 78│                dropout_p=self.dropout if self.training else 0,
 79│                is_causal=True,
 80│            )
 81│        else:
 82│            # manual implementation of attention
 83│            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
 84│            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, 
float("-inf"))
 85█            att = F.softmax(att, dim=-1)
 86│            att = self.attn_dropout(att)
 87│            y = att @ v  # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
 88│        y = (
...⋮...
 94│        return y
 95│
 96│
 97█class MLP(nn.Module):
 98│
 99│    def __init__(self, config):
100│        super().__init__()
101█        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, 
bias=config.bias)
102█        self.gelu = nn.GELU()
103█        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, 
bias=config.bias)
104█        self.dropout = nn.Dropout(config.dropout)
105│
106│    def forward(self, x):
107│        x = self.c_fc(x)
...⋮...
111│        return x
112│
113│
114█class Block(nn.Module):
115│
116│    def __init__(self, config):
117│        super().__init__()
...⋮...
141│    )
142│
143│
144█class GPT(nn.Module):
145│
146│    def __init__(self, config):
147│        super().__init__()
148│        assert config.vocab_size is not None
149│        assert config.block_size is not None
150│        self.config = config
151│
152█        self.transformer = nn.ModuleDict(
153│            dict(
154█                wte=nn.Embedding(config.vocab_size, config.n_embd),
155█                wpe=nn.Embedding(config.block_size, config.n_embd),
156█                drop=nn.Dropout(config.dropout),
157█                h=nn.ModuleList([Block(config) for _ in 
range(config.n_layer)]),
158│                ln_f=LayerNorm(config.n_embd, bias=config.bias),
159│            )
160│        )
161█        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, 
bias=False)
162│        # with weight tying when using torch.compile() some warnings get 
generated:
163│        # "UserWarning: functional_call was passed multiple values for tied 
weights.
164│        # This behavior is deprecated and will be an error in future 
versions"
...⋮...
172│        # apply special scaled init to the residual projections, per GPT-2 
paper
173│        for pn, p in self.named_parameters():
174│            if pn.endswith("c_proj.weight"):
175█                torch.nn.init.normal_(
176│                    p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)
177│                )
178│
...⋮...
192│        return n_params
193│
194│    def _init_weights(self, module):
195█        if isinstance(module, nn.Linear):
196█            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
197│            if module.bias is not None:
198█                torch.nn.init.zeros_(module.bias)
199█        elif isinstance(module, nn.Embedding):
200█            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
201│
202│    def forward(self, idx, targets=None):
203│        device = idx.device
204│        b, t = idx.size()
205│        assert (
206│            t <= self.config.block_size
207│        ), f"Cannot forward sequence of length {t}, block size is only 
{self.config.block_size}"
208█        pos = torch.arange(0, t, dtype=torch.long, device=device)  # shape 
(t)
209│
210│        # forward the GPT model itself
211│        tok_emb = self.transformer.wte(idx)  # token embeddings of shape (b,
t, n_embd)
...⋮...
218│        if targets is not None:
219│            # if we are given some desired targets also calculate the loss
220│            logits = self.lm_head(x)
221█            loss = F.cross_entropy(
222│                logits.view(-1, logits.size(-1)), targets.view(-1), 
ignore_index=-1
223│            )
224│        else:
...⋮...
233│    def crop_block_size(self, block_size):
...⋮...
236│        # but want to use a smaller block size for some smaller, simpler 
model
237│        assert block_size <= self.config.block_size
238│        self.config.block_size = block_size
239█        self.transformer.wpe.weight = nn.Parameter(
240│            self.transformer.wpe.weight[:block_size]
241│        )
242│        for block in self.transformer.h:
...⋮...
246│    def configure_optimizers(self, weight_decay, learning_rate, betas, 
device_type):
247│        # start with all of the candidate parameters
248│        param_dict = {pn: p for pn, p in self.named_parameters()}
...⋮...
265│            f"num non-decayed parameter tensors: {len(nodecay_params)}, with
{num_nodecay_params:,} parameters"
266│        )
267│        # Create AdamW optimizer and use the fused version if it is 
available
268█        fused_available = "fused" in 
inspect.signature(torch.optim.AdamW).parameters
269│        use_fused = fused_available and device_type == "cuda"
270│        extra_args = dict(fused=True) if use_fused else dict()
271█        optimizer = torch.optim.AdamW(
272│            optim_groups, lr=learning_rate, betas=betas, **extra_args
273│        )
274│        print(f"using fused AdamW: {use_fused}")
275│
276│        return optimizer
277│
278█    @torch.no_grad()
279│    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
280│        """
281│        Take a conditioning sequence of indices idx (LongTensor of shape 
(b,t)) and complete
282│        the sequence max_new_tokens times, feeding the predictions back into
the model each time.
283│        Most likely you'll want to make sure to be in model.eval() mode of 
operation for this.
284│        """
285│        for _ in range(max_new_tokens):
286│            # if the sequence context is growing too long we must crop it at
block_size
287│            idx_cond = (
288│                idx
289│                if idx.size(1) <= self.config.block_size
290│                else idx[:, -self.config.block_size :]
...⋮...
295│            logits = logits[:, -1, :] / temperature
296│            # optionally crop the logits to only the top k options
297│            if top_k is not None:
298█                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
299│                logits[logits < v[:, [-1]]] = -float("Inf")
300│            # apply softmax to convert logits to (normalized) probabilities
301█            probs = F.softmax(logits, dim=-1)
302│            # sample from the distribution
303█            idx_next = torch.multinomial(probs, num_samples=1)
304│            # append sampled index to the running sequence and continue
305█            idx = torch.cat((idx, idx_next), dim=1)
306│
307│        return idx
308│
...⋮...
311│def train(dataset="shakespeare_char", out_dir="run_0", seed_offset=0):
...⋮...
315│    gradient_accumulation_steps = 1
...⋮...
348│    backend = "nccl"  # 'nccl', 'gloo', etc.
349│    # system
350│    device = "cuda"  # Always use CUDA
351█    dtype = 'bfloat16' if torch.cuda.is_available() and 
torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 
'float16', the latter will auto implement a GradScaler
352│    compile = True  # do not torch compile the model on macbooks
353│
354│
...⋮...
360│
361│    if master_process:
362│        os.makedirs(out_dir, exist_ok=True)
363█    torch.manual_seed(1337 + seed_offset)
364█    torch.backends.cuda.matmul.allow_tf32 = True  # allow tf32 on matmul
365█    torch.backends.cudnn.allow_tf32 = True  # allow tf32 on cudnn
366│    device_type = "cuda" if "cuda" in device else "cpu"  # for later use in 
torch.autocast
367│    # note: float16 data type will automatically use a GradScaler
368│    ptdtype = {
369█        "float32": torch.float32,
370█        "bfloat16": torch.bfloat16,
371█        "float16": torch.float16,
372│    }[dtype]
373│    ctx = (
374│        nullcontext()
375│        if device_type == "cpu"
376█        else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
377│    )
378│
379│    # poor man's data loader
...⋮...
383│    def get_batch(split):
384│        # We recreate np.memmap every batch to avoid a memory leak, as per
385│        # 
https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-i
terate-once/61472122#61472122
386│        if split == "train":
387█            data = np.memmap(os.path.join(data_dir, "train.bin"), 
dtype=np.uint16, mode="r")
388│        else:
389█            data = np.memmap(os.path.join(data_dir, "val.bin"), 
dtype=np.uint16, mode="r")
390█        ix = torch.randint(len(data) - block_size, (batch_size,))
391█        x = torch.stack(
392█            [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) 
for i in ix]
393│        )
394█        y = torch.stack(
395│            [
396█                torch.from_numpy((data[i + 1 : i + 1 + 
block_size]).astype(np.int64))
397│                for i in ix
398│            ]
399│        )
...⋮...
448│    model.to(device)
449│
450│    # initialize a GradScaler. If enabled=False scaler is a no-op
451█    scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16"))
452│
453│    # optimizer
454│    optimizer = model.configure_optimizers(
...⋮...
460│    if compile:
461│        print("compiling the model... (takes a ~minute)")
462│        unoptimized_model = model
463█        model = torch.compile(model)  # requires PyTorch 2.0
464│
465│
466│    # helps estimate an arbitrarily accurate loss over either split using 
many batches
467█    @torch.no_grad()
468│    def estimate_loss():
469│        out = {}
470│        model.eval()
471│        for split in ["train", "val"]:
472█            losses = torch.zeros(eval_iters)
473│            for k in range(eval_iters):
474│                X, Y = get_batch(split)
475│                with ctx:
...⋮...
508│    while True:
509│
...⋮...
511│        lr = get_lr(iter_num) if decay_lr else learning_rate
...⋮...
516│        if iter_num % eval_interval == 0 and master_process:
517│            losses = estimate_loss()
...⋮...
537│            if losses["val"] < best_val_loss or always_save_checkpoint:
538│                best_val_loss = losses["val"]
539│                if iter_num > 0 and not never_save_checkpoint:
540│                    checkpoint = {
541│                        "model": raw_model.state_dict(),
542│                        "optimizer": optimizer.state_dict(),
543│                        "model_args": model_args,
544│                        "iter_num": iter_num,
545│                        "best_val_loss": best_val_loss,
546│                    }
547│                    print(f"saving checkpoint to {out_dir}")
548█                    torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt"))
549│        if iter_num == 0 and eval_only:
550│            break
551│
...⋮...
564│        # clip the gradient
565│        if grad_clip != 0.0:
566│            scaler.unscale_(optimizer)
567█            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
568│        # step the optimizer and scaler if training in fp16
569│        scaler.step(optimizer)
570│        scaler.update()
...⋮...
629│        with open(start[5:], 'r', encoding='utf-8') as f:
630│            start = f.read()
631│    start_ids = encode(start)
632█    x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, 
...])
633│
634│    # Run generation
635│    model.eval()
636│    results = []
637█    with torch.no_grad():
638│        with ctx:
639│            for k in range(num_samples):
640│                start_time = time.time()
...⋮...
668│        json.dump(final_info, f)
669│    return final_info, train_log_info, val_log_info
670│
671█parser = argparse.ArgumentParser(description='Run experiment')
672│parser.add_argument('--out_dir', type=str, default='run_0', help='Output 
directory')
673│args = parser.parse_args()
674│
675│if __name__ == "__main__":
676│    num_seeds = {
677│        "shakespeare_char": 3,
678│        "enwik8": 1,
679│        "text8": 1,
...⋮...
685│    for dataset in ["shakespeare_char", "enwik8", "text8"]:
686│        final_info_list = []
...⋮...
691│            all_results[f"{dataset}_{seed_offset}_val_info"] = val_info
692│            final_info_list.append(final_info)
693│        final_info_dict = {k: [d[k] for d in final_info_list] for k in 
final_info_list[0].keys()}
694█        means = {f"{k}_mean": np.mean(v) for k, v in 
final_info_dict.items()}
695█        stderrs = {f"{k}_stderr": np.std(v) / len(v) for k, v in 
final_info_dict.items()}
696│        final_infos[dataset] = {
697│            "means": means,
698│            "stderrs": stderrs,
...⋮...
703│        json.dump(final_infos, f)
704│
705│    with open(os.path.join(out_dir, "all_results.npy"), "wb") as f:
706█        np.save(f, all_results)


To fix the errors, we need to ensure that the necessary imports for torch,      
torch.nn, torch.nn.functional, numpy, and argparse are included in              
experiment.py.                                                                  

Here are the SEARCH/REPLACE blocks to fix the errors:                           

experiment.py                                                                   

                                                                                
 <<<<<<< SEARCH                                                                 
 import os                                                                      
 import time                                                                    
 import math                                                                    
 import pickle                                                                  
 import inspect                                                                 
 import json                                                                    
 from contextlib import nullcontext                                             
 from dataclasses import dataclass                                              
 from q_learning_agent import QLearningAgent                                    
 =======                                                                        
 import os                                                                      
 import time                                                                    
 import math                                                                    
 import pickle                                                                  
 import inspect                                                                 
 import json                                                                    
 import numpy as np                                                             
 import torch                                                                   
 import torch.nn as nn                                                          
 import torch.nn.functional as F                                                
 import argparse                                                                
 from contextlib import nullcontext                                             
 from dataclasses import dataclass                                              
 from q_learning_agent import QLearningAgent                                    
 >>>>>>> REPLACE                                                                
                                                                                

Please apply these changes and then re-run the command python experiment.py     
--out_dir=run_1.                                                                
18550 prompt tokens, 200 completion tokens, $0.095750 cost

Applied edit to experiment.py
To fix the errors, we need to ensure that the necessary imports for `torch`, `torch.nn`, `torch.nn.functional`, `numpy`, and `argparse` are included in `experiment.py`.

Here are the *SEARCH/REPLACE* blocks to fix the errors:

experiment.py
```python
<<<<<<< SEARCH
import os
import time
import math
import pickle
import inspect
import json
from contextlib import nullcontext
from dataclasses import dataclass
from q_learning_agent import QLearningAgent
=======
import os
import time
import math
import pickle
import inspect
import json
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
from contextlib import nullcontext
from dataclasses import dataclass
from q_learning_agent import QLearningAgent
>>>>>>> REPLACE
```

Please apply these changes and then re-run the command `python experiment.py --out_dir=run_1`.
Traceback (most recent call last):
  File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 693, in <module>
    final_info, train_info, val_info = train(dataset, out_dir, seed_offset)
  File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 527, in train
    state = q_agent.get_state(losses["val"], lr)
  File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/q_learning_agent.py", line 11, in get_state
    return (round(val_loss, 2), round(current_lr, 5))
TypeError: type Tensor doesn't define __round__ method

Run 1 failed with return code 1
Run failed with the following error Traceback (most recent call last):
  File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 693, in <module>
    final_info, train_info, val_info = train(dataset, out_dir, seed_offset)
  File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/experiment.py", line 527, in train
    state = q_agent.get_state(losses["val"], lr)
  File "/home/anon/ai_scientist/results/nanoGPT/20240725_214144_rl_lr_adaptation/q_learning_agent.py", line 11, in get_state
    return (round(val_loss, 2), round(current_lr, 5))
TypeError: type Tensor doesn't define __round__ method

To fix the error, we need to convert the val_loss tensor to a Python float      
before rounding it. We can do this by calling the .item() method on the tensor. 

Here are the necessary changes:                                                 

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
         return (round(val_loss, 2), round(current_lr, 5))                      
 =======                                                                        
         return (round(val_loss.item(), 2), round(current_lr, 5))               
 >>>>>>> REPLACE                                                                
                                                                                

This change will ensure that val_loss is converted to a float before rounding,  
which should resolve the TypeError.                                             
10543 prompt tokens, 122 completion tokens, $0.054545 cost

Applied edit to q_learning_agent.py
To fix the error, we need to convert the `val_loss` tensor to a Python float before rounding it. We can do this by calling the `.item()` method on the tensor.

Here are the necessary changes:

q_learning_agent.py
```python
<<<<<<< SEARCH
        return (round(val_loss, 2), round(current_lr, 5))
=======
        return (round(val_loss.item(), 2), round(current_lr, 5))
>>>>>>> REPLACE
```

This change will ensure that `val_loss` is converted to a float before rounding, which should resolve the `TypeError`.
First, let's update the notes.txt file to include the results and description   
for Run 1.                                                                      

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
 ## Run 0: Baseline                                                             
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437,    
 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean':             
 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 
 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean':   
 1.0055421590805054, 'total_train_time_mean': 819.4551751613617,                
 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8':           
 {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean':            
 0.979989230632782, 'total_train_time_mean': 801.224205493927,                  
 'avg_inference_tokens_per_second_mean': 671.5678332249411}}                    
 Description: Baseline results.                                                 
 =======                                                                        
 ## Run 0: Baseline                                                             
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437,    
 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean':             
 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 
 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean':   
 1.0055421590805054, 'total_train_time_mean': 819.4551751613617,                
 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8':           
 {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean':            
 0.979989230632782, 'total_train_time_mean': 801.224205493927,                  
 'avg_inference_tokens_per_second_mean': 671.5678332249411}}                    
 Description: Baseline results.                                                 
                                                                                
 ## Run 1: Q-learning with initial learning rate adaptation                     
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046,    
 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean':             
 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138},  
 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean':  
 1.0050768852233887, 'total_train_time_mean': 799.199625492096,                 
 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8':           
 {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean':            
 0.9795507192611694, 'total_train_time_mean': 796.1075961589813,                
 'avg_inference_tokens_per_second_mean': 691.9504174462957}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation. The Q-learning agent adjusted the learning rate based on the curre 
 state (validation loss, current learning rate) and used a reward signal derive 
 from validation performance to update the Q-values. The training loop was      
 modified to incorporate the RL agent's adjustments to the learning rate at eac 
 evaluation interval. The results were compared with the baseline model using   
 static or heuristic-based learning rate schedules on multiple datasets         
 (shakespeare_char, enwik8, text8).                                             
 >>>>>>> REPLACE                                                                
                                                                                

Next, let's implement the next experiment. For this experiment, we will use a   
different initial learning rate to see how it affects the Q-learning adaptation.
We will set the initial learning rate to 2e-3 for shakespeare_char and 1e-3 for 
enwik8 and text8.                                                               

experiment.py                                                                   

                                                                                
 <<<<<<< SEARCH                                                                 
     learning_rate = (                                                          
         1e-3  if dataset == "shakespeare_char" else 5e-4                       
     )                                                                          
 =======                                                                        
     learning_rate = (                                                          
         2e-3  if dataset == "shakespeare_char" else 1e-3                       
     )                                                                          
 >>>>>>> REPLACE                                                                
                                                                                

Now, you can run the next experiment with the command:                          

                                                                                
 python experiment.py --out_dir=run_2                                           
                                                                                
11043 prompt tokens, 973 completion tokens, $0.069810 cost

Applied edit to experiment.py
Applied edit to notes.txt
First, let's update the `notes.txt` file to include the results and description for Run 1.

notes.txt
```python
<<<<<<< SEARCH
## Run 0: Baseline
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}}
Description: Baseline results.
=======
## Run 0: Baseline
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437, 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean': 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean': 1.0055421590805054, 'total_train_time_mean': 819.4551751613617, 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8': {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean': 0.979989230632782, 'total_train_time_mean': 801.224205493927, 'avg_inference_tokens_per_second_mean': 671.5678332249411}}
Description: Baseline results.

## Run 1: Q-learning with initial learning rate adaptation
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}}
Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
>>>>>>> REPLACE
```

Next, let's implement the next experiment. For this experiment, we will use a different initial learning rate to see how it affects the Q-learning adaptation. We will set the initial learning rate to `2e-3` for `shakespeare_char` and `1e-3` for `enwik8` and `text8`.

experiment.py
```python
<<<<<<< SEARCH
    learning_rate = (
        1e-3  if dataset == "shakespeare_char" else 5e-4
    )
=======
    learning_rate = (
        2e-3  if dataset == "shakespeare_char" else 1e-3
    )
>>>>>>> REPLACE
```

Now, you can run the next experiment with the command:
```sh
python experiment.py --out_dir=run_2
```
First, let's update the notes.txt file to include the results and description   
for Run 2.                                                                      

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
 ## Run 1: Q-learning with initial learning rate adaptation                     
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046,    
 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean':             
 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138},  
 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean':  
 1.0050768852233887, 'total_train_time_mean': 799.199625492096,                 
 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8':           
 {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean':            
 0.9795507192611694, 'total_train_time_mean': 796.1075961589813,                
 'avg_inference_tokens_per_second_mean': 691.9504174462957}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation. The Q-learning agent adjusted the learning rate based on the curre 
 state (validation loss, current learning rate) and used a reward signal derive 
 from validation performance to update the Q-values. The training loop was      
 modified to incorporate the RL agent's adjustments to the learning rate at eac 
 evaluation interval. The results were compared with the baseline model using   
 static or heuristic-based learning rate schedules on multiple datasets         
 (shakespeare_char, enwik8, text8).                                             
 =======                                                                        
 ## Run 1: Q-learning with initial learning rate adaptation                     
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046,    
 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean':             
 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138},  
 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean':  
 1.0050768852233887, 'total_train_time_mean': 799.199625492096,                 
 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8':           
 {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean':            
 0.9795507192611694, 'total_train_time_mean': 796.1075961589813,                
 'avg_inference_tokens_per_second_mean': 691.9504174462957}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation. The Q-learning agent adjusted the learning rate based on the curre 
 state (validation loss, current learning rate) and used a reward signal derive 
 from validation performance to update the Q-values. The training loop was      
 modified to incorporate the RL agent's adjustments to the learning rate at eac 
 evaluation interval. The results were compared with the baseline model using   
 static or heuristic-based learning rate schedules on multiple datasets         
 (shakespeare_char, enwik8, text8).                                             
                                                                                
 ## Run 2: Q-learning with different initial learning rates                     
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812,    
 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean':             
 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 
 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean':  
 0.9933806657791138, 'total_train_time_mean': 806.1875951290131,                
 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8':           
 {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean':            
 0.9613448977470398, 'total_train_time_mean': 807.7686207294464,                
 'avg_inference_tokens_per_second_mean': 652.3187905322042}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with different initial learning rates. The initial learning rate wa 
 set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning 
 agent adjusted the learning rate based on the current state (validation loss,  
 current learning rate) and used a reward signal derived from validation        
 performance to update the Q-values. The training loop was modified to          
 incorporate the RL agent's adjustments to the learning rate at each evaluation 
 interval. The results were compared with the baseline model using static or    
 heuristic-based learning rate schedules on multiple datasets (shakespeare_char 
 enwik8, text8).                                                                
 >>>>>>> REPLACE                                                                
                                                                                

Next, let's implement the next experiment. For this experiment, we will use a   
different reward signal for the Q-learning agent. Instead of using the negative 
validation loss as the reward, we will use the improvement in validation loss as
the reward.                                                                     

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
             reward = -losses["val"]  # Reward is negative validation loss      
 =======                                                                        
             reward = best_val_loss - losses["val"]  # Reward is improvement in 
 validation loss                                                                
 >>>>>>> REPLACE                                                                
                                                                                

Now, you can run the next experiment with the command:                          

                                                                                
 python experiment.py --out_dir=run_3                                           
                                                                                
12718 prompt tokens, 1173 completion tokens, $0.081185 cost

Applied edit to q_learning_agent.py
Applied edit to notes.txt
First, let's update the `notes.txt` file to include the results and description for Run 2.

notes.txt
```python
<<<<<<< SEARCH
## Run 1: Q-learning with initial learning rate adaptation
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}}
Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
=======
## Run 1: Q-learning with initial learning rate adaptation
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8112714489301046, 'best_val_loss_mean': 1.4664853016535442, 'total_train_time_mean': 76.33582202593486, 'avg_inference_tokens_per_second_mean': 680.220956113138}, 'enwik8': {'final_train_loss_mean': 0.9324554204940796, 'best_val_loss_mean': 1.0050768852233887, 'total_train_time_mean': 799.199625492096, 'avg_inference_tokens_per_second_mean': 690.1664700419294}, 'text8': {'final_train_loss_mean': 0.9926028251647949, 'best_val_loss_mean': 0.9795507192611694, 'total_train_time_mean': 796.1075961589813, 'avg_inference_tokens_per_second_mean': 691.9504174462957}}
Description: This run implemented Q-learning for dynamic learning rate adaptation. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).

## Run 2: Q-learning with different initial learning rates
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate was set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
>>>>>>> REPLACE
```

Next, let's implement the next experiment. For this experiment, we will use a different reward signal for the Q-learning agent. Instead of using the negative validation loss as the reward, we will use the improvement in validation loss as the reward.

q_learning_agent.py
```python
<<<<<<< SEARCH
            reward = -losses["val"]  # Reward is negative validation loss
=======
            reward = best_val_loss - losses["val"]  # Reward is improvement in validation loss
>>>>>>> REPLACE
```

Now, you can run the next experiment with the command:
```sh
python experiment.py --out_dir=run_3
```
Let's first update the notes.txt file with the results and description for Run  
3.                                                                              

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
                                                                                


  Run 3: Q-learning with reward signal based on improvement in validation loss  

Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496,     
'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean':               
75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188},  
'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean':   
0.9944368004798889, 'total_train_time_mean': 796.9592888355255,                 
'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8':            
{'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean':             
0.961367666721344, 'total_train_time_mean': 791.6123127937317,                  
'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run
implemented Q-learning for dynamic learning rate adaptation with a different    
reward signal. Instead of using the negative validation loss as the reward, the 
improvement in validation loss was used. The Q-learning agent adjusted the      
learning rate based on the current state (validation loss, current learning     
rate) and used the reward signal derived from the improvement in validation     
performance to update the Q-values. The training loop was modified to           
incorporate the RL agent's adjustments to the learning rate at each evaluation  
interval. The results were compared with the baseline model using static or     
heuristic-based learning rate schedules on multiple datasets (shakespeare_char, 
enwik8, text8).                                                                 

▌ ▌ ▌ ▌ ▌ ▌ ▌ REPLACE                                                         

                                                                                
                                                                                
 Next, let's propose the next experiment. For Run 4, we will use a different    
 exploration strategy for the Q-learning agent. Instead of using a fixed epsilo 
 value for exploration, we will use an epsilon decay strategy where epsilon     
 decreases over time.                                                           
                                                                                
 Here are the changes needed:                                                   
                                                                                
 q_learning_agent.py                                                            
 ```python                                                                      
 <<<<<<< SEARCH                                                                 
         self.epsilon = epsilon                                                 
 =======                                                                        
         self.epsilon = epsilon                                                 
         self.initial_epsilon = epsilon                                         
         self.epsilon_decay = 0.99  # Decay rate for epsilon                    
 >>>>>>> REPLACE                                                                
                                                                                

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
         if np.random.rand() < self.epsilon:                                    
 =======                                                                        
         if np.random.rand() < self.epsilon:                                    
             self.epsilon *= self.epsilon_decay  # Decay epsilon                
 >>>>>>> REPLACE                                                                
                                                                                

Now, you can run the next experiment with the command:                          

                                                                                
 python experiment.py --out_dir=run_4                                           
                                                                                
11638 prompt tokens, 584 completion tokens, $0.066950 cost

The LLM did not conform to the edit format.
https://aider.chat/docs/troubleshooting/edit-errors.html

Let's first update the `notes.txt` file with the results and description for Run
3.

notes.txt
```python
<<<<<<< SEARCH
```

## Run 3: Q-learning with reward signal based on improvement in validation loss
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 
'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 
75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 
'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 
0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 
'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': 
{'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 
0.961367666721344, 'total_train_time_mean': 791.6123127937317, 
'avg_inference_tokens_per_second_mean': 658.961942825521}}
Description: This run implemented Q-learning for dynamic learning rate 
adaptation with a different reward signal. Instead of using the negative 
validation loss as the reward, the improvement in validation loss was used. The 
Q-learning agent adjusted the learning rate based on the current state 
(validation loss, current learning rate) and used the reward signal derived from
the improvement in validation performance to update the Q-values. The training 
loop was modified to incorporate the RL agent's adjustments to the learning rate
at each evaluation interval. The results were compared with the baseline model 
using static or heuristic-based learning rate schedules on multiple datasets 
(shakespeare_char, enwik8, text8).
>>>>>>> REPLACE

^^^ Expected `=======` not >>>>>>> REPLACE
Let's update the notes.txt file with the results and description for Run 3      
correctly.                                                                      

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
 ## Run 2: Q-learning with different initial learning rates                     
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812,    
 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean':             
 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 
 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean':  
 0.9933806657791138, 'total_train_time_mean': 806.1875951290131,                
 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8':           
 {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean':            
 0.9613448977470398, 'total_train_time_mean': 807.7686207294464,                
 'avg_inference_tokens_per_second_mean': 652.3187905322042}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with different initial learning rates. The initial learning rate wa 
 set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning 
 agent adjusted the learning rate based on the current state (validation loss,  
 current learning rate) and used a reward signal derived from validation        
 performance to update the Q-values. The training loop was modified to          
 incorporate the RL agent's adjustments to the learning rate at each evaluation 
 interval. The results were compared with the baseline model using static or    
 heuristic-based learning rate schedules on multiple datasets (shakespeare_char 
 enwik8, text8).                                                                
 =======                                                                        
 ## Run 2: Q-learning with different initial learning rates                     
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812,    
 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean':             
 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 
 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean':  
 0.9933806657791138, 'total_train_time_mean': 806.1875951290131,                
 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8':           
 {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean':            
 0.9613448977470398, 'total_train_time_mean': 807.7686207294464,                
 'avg_inference_tokens_per_second_mean': 652.3187905322042}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with different initial learning rates. The initial learning rate wa 
 set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning 
 agent adjusted the learning rate based on the current state (validation loss,  
 current learning rate) and used a reward signal derived from validation        
 performance to update the Q-values. The training loop was modified to          
 incorporate the RL agent's adjustments to the learning rate at each evaluation 
 interval. The results were compared with the baseline model using static or    
 heuristic-based learning rate schedules on multiple datasets (shakespeare_char 
 enwik8, text8).                                                                
                                                                                
 ## Run 3: Q-learning with reward signal based on improvement in validation los 
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496,    
 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean':              
 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 
 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean':  
 0.9944368004798889, 'total_train_time_mean': 796.9592888355255,                
 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8':           
 {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean':            
 0.961367666721344, 'total_train_time_mean': 791.6123127937317,                 
 'avg_inference_tokens_per_second_mean': 658.961942825521}}                     
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with a different reward signal. Instead of using the negative       
 validation loss as the reward, the improvement in validation loss was used. Th 
 Q-learning agent adjusted the learning rate based on the current state         
 (validation loss, current learning rate) and used the reward signal derived fr 
 the improvement in validation performance to update the Q-values. The training 
 loop was modified to incorporate the RL agent's adjustments to the learning ra 
 at each evaluation interval. The results were compared with the baseline model 
 using static or heuristic-based learning rate schedules on multiple datasets   
 (shakespeare_char, enwik8, text8).                                             
 >>>>>>> REPLACE                                                                
                                                                                

Next, let's propose the next experiment. For Run 4, we will use a different     
exploration strategy for the Q-learning agent. Instead of using a fixed epsilon 
value for exploration, we will use an epsilon decay strategy where epsilon      
decreases over time.                                                            

Here are the changes needed:                                                    

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
         self.epsilon = epsilon                                                 
 =======                                                                        
         self.epsilon = epsilon                                                 
         self.initial_epsilon = epsilon                                         
         self.epsilon_decay = 0.99  # Decay rate for epsilon                    
 >>>>>>> REPLACE                                                                
                                                                                

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
         if np.random.rand() < self.epsilon:                                    
 =======                                                                        
         if np.random.rand() < self.epsilon:                                    
             self.epsilon *= self.epsilon_decay  # Decay epsilon                
 >>>>>>> REPLACE                                                                
                                                                                

Now, you can run the next experiment with the command:                          

                                                                                
 python experiment.py --out_dir=run_4                                           
                                                                                
12629 prompt tokens, 1303 completion tokens, $0.082690 cost

Applied edit to q_learning_agent.py
Applied edit to notes.txt
Let's update the `notes.txt` file with the results and description for Run 3 correctly.

notes.txt
```python
<<<<<<< SEARCH
## Run 2: Q-learning with different initial learning rates
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate was set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
=======
## Run 2: Q-learning with different initial learning rates
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8047561645507812, 'best_val_loss_mean': 1.4602874914805095, 'total_train_time_mean': 76.26222737630208, 'avg_inference_tokens_per_second_mean': 675.5019470493302}, 'enwik8': {'final_train_loss_mean': 0.9224221706390381, 'best_val_loss_mean': 0.9933806657791138, 'total_train_time_mean': 806.1875951290131, 'avg_inference_tokens_per_second_mean': 682.6881990162254}, 'text8': {'final_train_loss_mean': 0.9798105955123901, 'best_val_loss_mean': 0.9613448977470398, 'total_train_time_mean': 807.7686207294464, 'avg_inference_tokens_per_second_mean': 652.3187905322042}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with different initial learning rates. The initial learning rate was set to 2e-3 for shakespeare_char and 1e-3 for enwik8 and text8. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).

## Run 3: Q-learning with reward signal based on improvement in validation loss
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
>>>>>>> REPLACE
```

Next, let's propose the next experiment. For Run 4, we will use a different exploration strategy for the Q-learning agent. Instead of using a fixed epsilon value for exploration, we will use an epsilon decay strategy where epsilon decreases over time.

Here are the changes needed:

q_learning_agent.py
```python
<<<<<<< SEARCH
        self.epsilon = epsilon
=======
        self.epsilon = epsilon
        self.initial_epsilon = epsilon
        self.epsilon_decay = 0.99  # Decay rate for epsilon
>>>>>>> REPLACE
```

q_learning_agent.py
```python
<<<<<<< SEARCH
        if np.random.rand() < self.epsilon:
=======
        if np.random.rand() < self.epsilon:
            self.epsilon *= self.epsilon_decay  # Decay epsilon
>>>>>>> REPLACE
```

Now, you can run the next experiment with the command:
```bash
python experiment.py --out_dir=run_4
```
Let's first update the notes.txt file with the results and description for Run  
4.                                                                              

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
                                                                                


  Run 3: Q-learning with reward signal based on improvement in validation loss  

Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496,     
'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean':               
75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188},  
'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean':   
0.9944368004798889, 'total_train_time_mean': 796.9592888355255,                 
'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8':            
{'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean':             
0.961367666721344, 'total_train_time_mean': 791.6123127937317,                  
'avg_inference_tokens_per_second_mean': 658.961942825521}} Description: This run
implemented Q-learning for dynamic learning rate adaptation with a different    
reward signal. Instead of using the negative validation loss as the reward, the 
improvement in validation loss was used. The Q-learning agent adjusted the      
learning rate based on the current state (validation loss, current learning     
rate) and used the reward signal derived from the improvement in validation     
performance to update the Q-values. The training loop was modified to           
incorporate the RL agent's adjustments to the learning rate at each evaluation  
interval. The results were compared with the baseline model using static or     
heuristic-based learning rate schedules on multiple datasets (shakespeare_char, 
enwik8, text8).                                                                 


                 Run 4: Q-learning with epsilon decay strategy                  

Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894,     
'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean':               
79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749},  
'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean':    
0.9917866587638855, 'total_train_time_mean': 852.1484353542328,                 
'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8':            
{'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean':             
0.9615200161933899, 'total_train_time_mean': 846.4471461772919,                 
'avg_inference_tokens_per_second_mean': 613.2623906747798}} Description: This   
run implemented Q-learning for dynamic learning rate adaptation with an epsilon 
decay strategy. Instead of using a fixed epsilon value for exploration, an      
epsilon decay strategy was used where epsilon decreases over time. The          
Q-learning agent adjusted the learning rate based on the current state          
(validation loss, current learning rate) and used a reward signal derived from  
validation performance to update the Q-values. The training loop was modified to
incorporate the RL agent's adjustments to the learning rate at each evaluation  
interval. The results were compared with the baseline model using static or     
heuristic-based learning rate schedules on multiple datasets (shakespeare_char, 
enwik8, text8).                                                                 

                                                                                
                                                                                
                                                                                

Next, let's propose the next experiment. We will use a different discount factor
(gamma) for the Q-learning agent to see how it affects the learning rate        
adaptation.                                                                     

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
     def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1):                        
 =======                                                                        
     def __init__(self, lr=0.1, gamma=0.95, epsilon=0.1):                       
 >>>>>>> REPLACE                                                                
                                                                                

Now, you can run the next experiment with the command:                          

                                                                                
 python experiment.py --out_dir=run_5                                           
                                                                                
12168 prompt tokens, 864 completion tokens, $0.073800 cost

The LLM did not conform to the edit format.
https://aider.chat/docs/troubleshooting/edit-errors.html

Let's first update the `notes.txt` file with the results and description for Run
4.

notes.txt
```python
<<<<<<< SEARCH
```
## Run 3: Q-learning with reward signal based on improvement in validation loss
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 
'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 
75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 
'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 
0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 
'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': 
{'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 
0.961367666721344, 'total_train_time_mean': 791.6123127937317, 
'avg_inference_tokens_per_second_mean': 658.961942825521}}
Description: This run implemented Q-learning for dynamic learning rate 
adaptation with a different reward signal. Instead of using the negative 
validation loss as the reward, the improvement in validation loss was used. The 
Q-learning agent adjusted the learning rate based on the current state 
(validation loss, current learning rate) and used the reward signal derived from
the improvement in validation performance to update the Q-values. The training 
loop was modified to incorporate the RL agent's adjustments to the learning rate
at each evaluation interval. The results were compared with the baseline model 
using static or heuristic-based learning rate schedules on multiple datasets 
(shakespeare_char, enwik8, text8).

## Run 4: Q-learning with epsilon decay strategy
Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894, 
'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean': 
79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 
'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean': 
0.9917866587638855, 'total_train_time_mean': 852.1484353542328, 
'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8': 
{'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean': 
0.9615200161933899, 'total_train_time_mean': 846.4471461772919, 
'avg_inference_tokens_per_second_mean': 613.2623906747798}}
Description: This run implemented Q-learning for dynamic learning rate 
adaptation with an epsilon decay strategy. Instead of using a fixed epsilon 
value for exploration, an epsilon decay strategy was used where epsilon 
decreases over time. The Q-learning agent adjusted the learning rate based on 
the current state (validation loss, current learning rate) and used a reward 
signal derived from validation performance to update the Q-values. The training 
loop was modified to incorporate the RL agent's adjustments to the learning rate
at each evaluation interval. The results were compared with the baseline model 
using static or heuristic-based learning rate schedules on multiple datasets 
(shakespeare_char, enwik8, text8).
```
```

Next, let's propose the next experiment. We will use a different discount factor
(gamma) for the Q-learning agent to see how it affects the learning rate 
adaptation.

q_learning_agent.py
```python
<<<<<<< SEARCH

^^^ Expected `=======` not <<<<<<< SEARCH
Let's first update the notes.txt file with the results and description for Run  
4.                                                                              

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
 ## Run 3: Q-learning with reward signal based on improvement in validation los 
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496,    
 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean':              
 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 
 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean':  
 0.9944368004798889, 'total_train_time_mean': 796.9592888355255,                
 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8':           
 {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean':            
 0.961367666721344, 'total_train_time_mean': 791.6123127937317,                 
 'avg_inference_tokens_per_second_mean': 658.961942825521}}                     
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with a different reward signal. Instead of using the negative       
 validation loss as the reward, the improvement in validation loss was used. Th 
 Q-learning agent adjusted the learning rate based on the current state         
 (validation loss, current learning rate) and used the reward signal derived fr 
 the improvement in validation performance to update the Q-values. The training 
 loop was modified to incorporate the RL agent's adjustments to the learning ra 
 at each evaluation interval. The results were compared with the baseline model 
 using static or heuristic-based learning rate schedules on multiple datasets   
 (shakespeare_char, enwik8, text8).                                             
 =======                                                                        
 ## Run 3: Q-learning with reward signal based on improvement in validation los 
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496,    
 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean':              
 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 
 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean':  
 0.9944368004798889, 'total_train_time_mean': 796.9592888355255,                
 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8':           
 {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean':            
 0.961367666721344, 'total_train_time_mean': 791.6123127937317,                 
 'avg_inference_tokens_per_second_mean': 658.961942825521}}                     
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with a different reward signal. Instead of using the negative       
 validation loss as the reward, the improvement in validation loss was used. Th 
 Q-learning agent adjusted the learning rate based on the current state         
 (validation loss, current learning rate) and used the reward signal derived fr 
 the improvement in validation performance to update the Q-values. The training 
 loop was modified to incorporate the RL agent's adjustments to the learning ra 
 at each evaluation interval. The results were compared with the baseline model 
 using static or heuristic-based learning rate schedules on multiple datasets   
 (shakespeare_char, enwik8, text8).                                             
                                                                                
 ## Run 4: Q-learning with epsilon decay strategy                               
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894,    
 'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean':              
 79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 
 'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean':   
 0.9917866587638855, 'total_train_time_mean': 852.1484353542328,                
 'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8':           
 {'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean':            
 0.9615200161933899, 'total_train_time_mean': 846.4471461772919,                
 'avg_inference_tokens_per_second_mean': 613.2623906747798}}                    
 Description: This run implemented Q-learning for dynamic learning rate         
 adaptation with an epsilon decay strategy. Instead of using a fixed epsilon    
 value for exploration, an epsilon decay strategy was used where epsilon        
 decreases over time. The Q-learning agent adjusted the learning rate based on  
 the current state (validation loss, current learning rate) and used a reward   
 signal derived from validation performance to update the Q-values. The trainin 
 loop was modified to incorporate the RL agent's adjustments to the learning ra 
 at each evaluation interval. The results were compared with the baseline model 
 using static or heuristic-based learning rate schedules on multiple datasets   
 (shakespeare_char, enwik8, text8).                                             
 >>>>>>> REPLACE                                                                
                                                                                

Next, let's propose the next experiment. We will use a different discount factor
(gamma) for the Q-learning agent to see how it affects the learning rate        
adaptation.                                                                     

q_learning_agent.py                                                             

                                                                                
 <<<<<<< SEARCH                                                                 
     def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1):                        
 =======                                                                        
     def __init__(self, lr=0.1, gamma=0.95, epsilon=0.1):                       
 >>>>>>> REPLACE                                                                
                                                                                

Now, you can run the next experiment with the command:                          

                                                                                
 python experiment.py --out_dir=run_5                                           
                                                                                
13832 prompt tokens, 1218 completion tokens, $0.087430 cost

Applied edit to q_learning_agent.py
Applied edit to notes.txt
Let's first update the `notes.txt` file with the results and description for Run 4.

notes.txt
```python
<<<<<<< SEARCH
## Run 3: Q-learning with reward signal based on improvement in validation loss
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
=======
## Run 3: Q-learning with reward signal based on improvement in validation loss
Results: {'shakespeare_char': {'final_train_loss_mean': 0.8062439958254496, 'best_val_loss_mean': 1.461962143580119, 'total_train_time_mean': 75.80110216140747, 'avg_inference_tokens_per_second_mean': 668.3102066342188}, 'enwik8': {'final_train_loss_mean': 0.9246289730072021, 'best_val_loss_mean': 0.9944368004798889, 'total_train_time_mean': 796.9592888355255, 'avg_inference_tokens_per_second_mean': 688.6266631351763}, 'text8': {'final_train_loss_mean': 0.9843199849128723, 'best_val_loss_mean': 0.961367666721344, 'total_train_time_mean': 791.6123127937317, 'avg_inference_tokens_per_second_mean': 658.961942825521}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with a different reward signal. Instead of using the negative validation loss as the reward, the improvement in validation loss was used. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used the reward signal derived from the improvement in validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).

## Run 4: Q-learning with epsilon decay strategy
Results: {'shakespeare_char': {'final_train_loss_mean': 0.7984780073165894, 'best_val_loss_mean': 1.463551680246989, 'total_train_time_mean': 79.24612506230672, 'avg_inference_tokens_per_second_mean': 617.9132836431749}, 'enwik8': {'final_train_loss_mean': 0.925983190536499, 'best_val_loss_mean': 0.9917866587638855, 'total_train_time_mean': 852.1484353542328, 'avg_inference_tokens_per_second_mean': 605.0617699125265}, 'text8': {'final_train_loss_mean': 0.9827583432197571, 'best_val_loss_mean': 0.9615200161933899, 'total_train_time_mean': 846.4471461772919, 'avg_inference_tokens_per_second_mean': 613.2623906747798}}
Description: This run implemented Q-learning for dynamic learning rate adaptation with an epsilon decay strategy. Instead of using a fixed epsilon value for exploration, an epsilon decay strategy was used where epsilon decreases over time. The Q-learning agent adjusted the learning rate based on the current state (validation loss, current learning rate) and used a reward signal derived from validation performance to update the Q-values. The training loop was modified to incorporate the RL agent's adjustments to the learning rate at each evaluation interval. The results were compared with the baseline model using static or heuristic-based learning rate schedules on multiple datasets (shakespeare_char, enwik8, text8).
>>>>>>> REPLACE
```

Next, let's propose the next experiment. We will use a different discount factor (gamma) for the Q-learning agent to see how it affects the learning rate adaptation.

q_learning_agent.py
```python
<<<<<<< SEARCH
    def __init__(self, lr=0.1, gamma=0.9, epsilon=0.1):
=======
    def __init__(self, lr=0.1, gamma=0.95, epsilon=0.1):
>>>>>>> REPLACE
```

Now, you can run the next experiment with the command:
```sh
python experiment.py --out_dir=run_5
```
To modify plot.py to generate the most relevant plots for the final writeup and 
fill in the "labels" dictionary with the correct names for each run, we will:   

 1 Update the labels dictionary to include all relevant runs.                   
 2 Ensure that the plots are generated for each dataset and saved with          
   appropriate filenames.                                                       

Here are the SEARCH/REPLACE blocks:                                             

plot.py                                                                         

                                                                                
 <<<<<<< SEARCH                                                                 
 labels = {                                                                     
     "run_0": "Baselines",                                                      
 =======                                                                        
 labels = {                                                                     
     "run_0": "Baseline",                                                       
     "run_1": "Q-learning with initial learning rate adaptation",               
     "run_2": "Q-learning with different initial learning rates",               
     "run_3": "Q-learning with reward signal based on improvement in validation 
 loss",                                                                         
     "run_4": "Q-learning with epsilon decay strategy",                         
 >>>>>>> REPLACE                                                                
 }                                                                              
                                                                                

plot.py                                                                         

                                                                                
 <<<<<<< SEARCH                                                                 
 # Plot 1: Line plot of training loss for each dataset across the runs with     
 labels                                                                         
 for dataset in datasets:                                                       
     plt.figure(figsize=(10, 6))                                                
     for i, run in enumerate(runs):                                             
         iters = results_info[run][dataset]["iters"]                            
         mean = results_info[run][dataset]["train_loss"]                        
         sterr = results_info[run][dataset]["train_loss_sterr"]                 
         plt.plot(iters, mean, label=labels[run], color=colors[i])              
         plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i],   
 alpha=0.2)                                                                     
                                                                                
     plt.title(f"Training Loss Across Runs for {dataset} Dataset")              
     plt.xlabel("Iteration")                                                    
     plt.ylabel("Training Loss")                                                
     plt.legend()                                                               
     plt.grid(True, which="both", ls="-", alpha=0.2)                            
     plt.tight_layout()                                                         
     plt.savefig(f"train_loss_{dataset}.png")                                   
     plt.close()                                                                
                                                                                
 # Plot 2: Line plot of validation loss for each dataset across the runs with   
 labels                                                                         
 for dataset in datasets:                                                       
     plt.figure(figsize=(10, 6))                                                
     for i, run in enumerate(runs):                                             
         iters = results_info[run][dataset]["iters"]                            
         mean = results_info[run][dataset]["val_loss"]                          
         sterr = results_info[run][dataset]["val_loss_sterr"]                   
         plt.plot(iters, mean, label=labels[run], color=colors[i])              
         plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i],   
 alpha=0.2)                                                                     
                                                                                
     plt.title(f"Validation Loss Across Runs for {dataset} Dataset")            
     plt.xlabel("Iteration")                                                    
     plt.ylabel("Validation Loss")                                              
     plt.legend()                                                               
     plt.grid(True, which="both", ls="-", alpha=0.2)                            
     plt.tight_layout()                                                         
     plt.savefig(f"val_loss_{dataset}.png")                                     
     plt.close()                                                                
 =======                                                                        
 # Plot 1: Line plot of training loss for each dataset across the runs with     
 labels                                                                         
 for dataset in datasets:                                                       
     plt.figure(figsize=(10, 6))                                                
     for i, run in enumerate(runs):                                             
         iters = results_info[run][dataset]["iters"]                            
         mean = results_info[run][dataset]["train_loss"]                        
         sterr = results_info[run][dataset]["train_loss_sterr"]                 
         plt.plot(iters, mean, label=labels[run], color=colors[i])              
         plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i],   
 alpha=0.2)                                                                     
                                                                                
     plt.title(f"Training Loss Across Runs for {dataset} Dataset")              
     plt.xlabel("Iteration")                                                    
     plt.ylabel("Training Loss")                                                
     plt.legend()                                                               
     plt.grid(True, which="both", ls="-", alpha=0.2)                            
     plt.tight_layout()                                                         
     plt.savefig(f"train_loss_{dataset}.png")                                   
     plt.close()                                                                
                                                                                
 # Plot 2: Line plot of validation loss for each dataset across the runs with   
 labels                                                                         
 for dataset in datasets:                                                       
     plt.figure(figsize=(10, 6))                                                
     for i, run in enumerate(runs):                                             
         iters = results_info[run][dataset]["iters"]                            
         mean = results_info[run][dataset]["val_loss"]                          
         sterr = results_info[run][dataset]["val_loss_sterr"]                   
         plt.plot(iters, mean, label=labels[run], color=colors[i])              
         plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i],   
 alpha=0.2)                                                                     
                                                                                
     plt.title(f"Validation Loss Across Runs for {dataset} Dataset")            
     plt.xlabel("Iteration")                                                    
     plt.ylabel("Validation Loss")                                              
     plt.legend()                                                               
     plt.grid(True, which="both", ls="-", alpha=0.2)                            
     plt.tight_layout()                                                         
     plt.savefig(f"val_loss_{dataset}.png")                                     
     plt.close()                                                                
 >>>>>>> REPLACE                                                                
                                                                                

These changes will ensure that the plots are generated for each dataset and     
saved with appropriate filenames, and the labels dictionary will include all    
relevant runs.                                                                  
12063 prompt tokens, 1043 completion tokens, $0.075960 cost

Applied edit to plot.py
/home/anon/ai_scientist/venv/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3504: RuntimeWarning: Mean of empty slice.
  return _methods._mean(a, axis=axis, dtype=dtype,
/home/anon/ai_scientist/venv/lib/python3.10/site-packages/numpy/core/_methods.py:129: RuntimeWarning: invalid value encountered in scalar divide
  ret = ret.dtype.type(ret / rcount)

Here are the changes to notes.txt to include descriptions of what each plot     
shows along with the filename of the figure:                                    

notes.txt                                                                       

                                                                                
 <<<<<<< SEARCH                                                                 
 ## Run 0: Baseline                                                             
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437,    
 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean':             
 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 
 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean':   
 1.0055421590805054, 'total_train_time_mean': 819.4551751613617,                
 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8':           
 {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean':            
 0.979989230632782, 'total_train_time_mean': 801.224205493927,                  
 'avg_inference_tokens_per_second_mean': 671.5678332249411}}                    
 Description: Baseline results.                                                 
 =======                                                                        
 ## Run 0: Baseline                                                             
 Results: {'shakespeare_char': {'final_train_loss_mean': 0.8186181902885437,    
 'best_val_loss_mean': 1.4654763221740723, 'total_train_time_mean':             
 77.26942734718322, 'avg_inference_tokens_per_second_mean': 666.5076153519527}, 
 'enwik8': {'final_train_loss_mean': 0.930223822593689, 'best_val_loss_mean':   
 1.0055421590805054, 'total_train_time_mean': 819.4551751613617,                
 'avg_inference_tokens_per_second_mean': 671.9918599180683}, 'text8':           
 {'final_train_loss_mean': 1.0013301372528076, 'best_val_loss_mean':            
 0.979989230632782, 'total_train_time_mean': 801.224205493927,                  
 'avg_inference_tokens_per_second_mean': 671.5678332249411}}                    
 Description: Baseline results.                                                 
                                                                                
 Plot Descriptions:                                                             
 1. Training Loss Across Runs for shakespeare_char Dataset: This plot shows the 
 training loss over iterations for the shakespeare_char dataset across differen 
 runs. It helps in understanding how the training loss decreases over time for  
 each run. Filename: train_loss_shakespeare_char.png                            
 2. Validation Loss Across Runs for shakespeare_char Dataset: This plot shows t 
 validation loss over iterations for the shakespeare_char dataset across        
 different runs. It helps in understanding how the validation loss decreases ov 
 time for each run. Filename: val_loss_shakespeare_char.png                     
 3. Training Loss Across Runs for enwik8 Dataset: This plot shows the training  
 loss over iterations for the enwik8 dataset across different runs. It helps in 
 understanding how the training loss decreases over time for each run. Filename 
 train_loss_enwik8.png                                                          
 4. Validation Loss Across Runs for enwik8 Dataset: This plot shows the         
 validation loss over iterations for the enwik8 dataset across different runs.  
 helps in understanding how the validation loss decreases over time for each ru 
 Filename: val_loss_enwik8.png                                                  
 5. Training Loss Across Runs for text8 Dataset: This plot shows the training   
 loss over iterations for the text8 dataset across different runs. It helps in  
 understanding how the training loss decreases over time for each run. Filename 
 train_loss_text8.png                                                           
 6. Validation Loss Across Runs for text8 Dataset: This plot shows the validati 
 loss over iterations for the text8 dataset across different runs. It helps in  
 understanding how the validation loss decreases over time for each run.        
 Filename: val_loss_text8.png                                                   
 >>>>>>> REPLACE                                                                
                                                                                

This update will ensure that the notes.txt file contains detailed descriptions  
of what each plot shows along with the filenames of the figures.                
13240 prompt tokens, 834 completion tokens, $0.078710 cost

Applied edit to notes.txt