File size: 2,712 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
\begin{thebibliography}{9}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi: #1}\else
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
\bibitem[Bahdanau et~al.(2014)Bahdanau, Cho, and Bengio]{bahdanau2014neural}
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
\newblock Neural machine translation by jointly learning to align and
translate.
\newblock \emph{arXiv preprint arXiv:1409.0473}, 2014.
\bibitem[Glorot \& Bengio(2010)Glorot and Bengio]{Glorot2010UnderstandingTD}
Xavier Glorot and Yoshua Bengio.
\newblock Understanding the difficulty of training deep feedforward neural
networks.
\newblock pp.\ 249--256, 2010.
\bibitem[Goodfellow et~al.(2016)Goodfellow, Bengio, Courville, and
Bengio]{goodfellow2016deep}
Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
\newblock \emph{Deep learning}, volume~1.
\newblock MIT Press, 2016.
\bibitem[He et~al.(2015)He, Zhang, Ren, and Sun]{He2015DelvingDI}
Kaiming He, X.~Zhang, Shaoqing Ren, and Jian Sun.
\newblock Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification.
\newblock \emph{2015 IEEE International Conference on Computer Vision (ICCV)},
pp.\ 1026--1034, 2015.
\bibitem[Kingma \& Ba(2014)Kingma and Ba]{kingma2014adam}
Diederik~P Kingma and Jimmy Ba.
\newblock Adam: A method for stochastic optimization.
\newblock \emph{arXiv preprint arXiv:1412.6980}, 2014.
\bibitem[Loshchilov \& Hutter(2017)Loshchilov and Hutter]{loshchilov2017adamw}
Ilya Loshchilov and Frank Hutter.
\newblock Decoupled weight decay regularization.
\newblock \emph{arXiv preprint arXiv:1711.05101}, 2017.
\bibitem[Power et~al.(2022)Power, Burda, Edwards, Babuschkin, and
Misra]{power2022grokking}
Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.
\newblock Grokking: Generalization beyond overfitting on small algorithmic
datasets.
\newblock \emph{arXiv preprint arXiv:2201.02177}, 2022.
\bibitem[Saxe et~al.(2013)Saxe, McClelland, and Ganguli]{Saxe2013ExactST}
Andrew~M. Saxe, James~L. McClelland, and S.~Ganguli.
\newblock Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks.
\newblock \emph{CoRR}, abs/1312.6120, 2013.
\bibitem[Vaswani et~al.(2017)Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez,
Kaiser, and Polosukhin]{vaswani2017attention}
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan~N Gomez, {\L}ukasz Kaiser, and Illia Polosukhin.
\newblock Attention is all you need.
\newblock \emph{Advances in neural information processing systems}, 30, 2017.
\end{thebibliography}
|