File size: 165,453 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 |
# ON THE GLOBAL CONVERGENCE OF GRADIENT DE## SCENT FOR MULTI-LAYER RESNETS IN THE MEAN- FIELD REGIME **Anonymous authors** Paper under double-blind review ABSTRACT Finding the optimal configuration of parameters in ResNet is a nonconvex minimization problem, but first order methods nevertheless find the global optimum in the overparameterized regime. We study this phenomenon with mean-field analysis, by translating the training process of ResNet to a gradient-flow partial differential equation (PDE) and examining the convergence properties of this limiting process. The activation function is assumed to be 2-homogeneous or partially 1-homogeneous; the regularized ReLU satisfies the latter condition. We show that if the ResNet is sufficiently large, with depth and width depending algebraically on the accuracy and confidence levels, first order optimization methods can find global minimizers that fit the training data. 1 INTRODUCTION Training of multi-layer neural networks (NN) requires us to find weights in the network such that its outputs perfectly match the prescribed outputs for a given set of training data. The usual approach is to formulate this problem as a nonconvex minimization problem and solve it with a first-order optimization method based on gradient descent (GD). Extensive computational experience shows that in the overparametrized regime (where the total number of parameters in the NN far exceeds the minimum number required to fit the training data), GD methods run for sufficiently many iterations consistently find a global minimum achieving the zero-loss property, that is, a perfect fit to the training data. What is the mechanism that allows GD to perform so well on this large-scale nonconvex problem? Part of the explanation is that in the overparametrized case, the parameter space contains many global minima, and some evidence suggests that they are distributed throughout the space, making it easier for the optimization process to find one such solution. Many approaches have been taken to characterize this phenomenon more rigorously, including landscape analysis, the neural tangent kernel approach, and mean-field analysis. All such viewpoints aim to give an idea of the structure and size of the NN required to ensure global convergence. Our approach in this paper is based on mean-field analysis and gradient-flow analysis, the latter being the continuous and mean-field limit of GD. We will examine residual neural networks (ResNets), and study how deep and wide a ResNet needs to be to match the data with high accuracy and high confidence. To relax the assumptions on the activation function as far as possible, we follow the setup in (Chizat & Bach, 2018), which requires this function to be either 2-homogeneous or partially 1-homogeneous. We show that both depth and width of the NN depend algebraically on ϵ and η, which are the accuracy and confidence levels, respectively. Mean-field analysis translates the training process of the ResNet to a gradient-flow partial differential equation (PDE). The training process evolves weights on connections between neurons. When dealing with wide neural networks, instead of tracing the evolution of each weight individually, one can record the evolution of the full distribution of the weight configuration. This perspective translates the coupled ordinary differential equation system (ODE) that characterizes evolution of individual weights into a PDE (the gradient-flow equation) characterizing the evolution of the distribution. The parameters in the PDE naturally depend on the properties of the activation functions. Gradient-flow ----- analysis is used to show that the PDE drives the solution to a point where the loss function becomes zero. We obtain our results on zero-loss training of ResNet with GD by translating the zero-loss property of the gradient-flow PDE back to the discrete-step setting. This strategy of the proof was taken in an earlier paper (Ding et al., 2021) where multi-layer ResNets were also analyzed. The main difference in this current paper is that the assumptions on the activation function and the initial training state for obtaining the global convergence are both much relaxed. This paper adopts the setup from (Chizat & Bach, 2018) of minimal Lipschitz continuity requirements on the activation function. Furthermore, the paper (Ding et al., 2021) required a dense support condition to be satisfied on the final parameter configuration has a support condition. This condition is hard to justify in any realistic setting, and is discared from current paper. Further details on these issues appear in Section 3. We discuss the setup of the problem and formally derive the continuous and mean-field limits in Section 2. In Section 3, we discuss related work, identify our contribution and present the main theorem in its general terms. After precise definitions and assumptions are specified in Section 4, we present the two main ingredients in the proof strategy. The mean-field limit is obtained by connecting the training process of the ResNet to a gradient-flow PDE in Section 5, and the zero-loss property of the limiting PDE is verified in Section 6. The main theorem is a direct corollary of Theorem 5.1 and Theorem 6.1 (or Theorem 6.2). 2 RESNET AND GRADIENT DESCENT The ResNet can be specified as follows: _f_ (zl(x), θl,m), _l = 0, 1, . . ., L_ 1, (1) _−_ _m=1_ X _zl+1(x) = zl(x) +_ _ML_ where M and L are the width and depth, respectively; z0(x) = x ∈ R[d] is the input data; and _zL(x) is the output from the last layer. The configuration of the NN is encoded in parameters_ ΘL,M = _θl,m_ _l=0,m=1[, where each parameter][ θ][l,m][ is a vector in][ R][k][ and][ f][ :][ R][d][ ×][ R][k][ →]_ [R][d][ is the] _{_ _}[L][−][1][,M]_ activation function. The formulation (1) covers“conventional” ResNets, which have the specific form 1 _ML_ _Ul,mσ(Wl,m[⊤]_ _[z][l][(][x][) +][ b][l,m][)][,]_ _l = 0, 1, . . ., L −_ 1, _m=1_ X _zl+1(x) = zl(x) +_ where Wl,m, Ul,m ∈ R[d], bl.m ∈ R, and σ is the ReLU activation function. In this example, we have _θl,m = (Wl,m, Ul,m, bl,m) ∈_ R[k], with k = 2d + 1. Denote by ZΘL,M (l; x) the output of the ResNet defined by (1). (This quantity is the same as zL(x) defined above, but we use this alternative notation to emphasize the dependece on parameters ΘL,M .) The goal of training ResNet is to seek parameters ΘL,M that minimize the following mismatch or _loss function:_ 1 2 _E(ΘL,M_ ) = Ex _µ_ _g(ZΘL,M (L; x))_ _y(x)_ _,_ (2) _∼_ 2 _−_ where g(x) : R[d] _→_ R is a given measuring function, y(x) ∈ R is the label corresponding to x, and µ is the probability from which the data x is drawn. Classical gradient descent updates the parameters according to the formula Θ[n]L,M[+1] [= Θ]L,M[n] _[−]_ _[h][∇][Θ][E][(Θ]L,M[n]_ [)][,] where h is the step length. In the limit as h → 0, the updating process can be characterized by the following ODE (Chizat & Bach, 2018, Def 2.2) (rescaled by L, M ): dΘL,M (s) = _ML_ ΘE(ΘL,M ), for s 0, (3) ds _−_ _∇_ _≥_ where s represents pseudo-time, the continuous analog of the discrete stepping process. ----- 2.1 THE CONTINUOUS LIMIT AND THE MEAN-FIELD LIMIT The continuous limit of (1) is obtained when the ResNet is infinitely deep, with L →∞. By reparametrizing the indices l = [0, · · ·, L − 1] with the continuous variable t ∈ [0, 1], we can view z in (1) as a function in t that satisfies a coupled ODE, with 1/L being the stepsize in t. Accordingly, _θl,m can be recast as θm(t = l/L), and denoting Θ(t) = {θm(t)}m[M]=1[, we can write the continuous]_ limit of (1) as dz(t; x) = [1] dt _M_ _f_ (z(t; x), θm(t)), _t_ [0, 1], with z(0; x) = x . (4) _∈_ _m=1_ X Extending (2), we define the cost functional E as 1 _E(Θ) = Ex_ _µ_ _,_ (5) _∼_ 2 [(][g][(][Z][Θ][(1;][ x][))][ −] _[y][(][x][))][2]_ where ZΘ(t; x) solves (4) for a given collection Θ(t) of the M functions _θm(t)_ . Similar to (3), _{_ _}_ we can use GD to find the configuration of Θ(t) that minimizes (5) by making Θ(t) flow in the descending direction of E(Θ). Denote s the pseudo-time of the training process, and Θ(s; t) the collection of functions at the training time s: _∂Θ_ _∂s_ [=][ −][M δE]δΘ Θ(s;·) _,_ _s > 0,_ _t ∈_ [0, 1] (6) where _[δE]δΘ_ [is the functional derivative of][ E][ with respect to][ Θ][, and thus a list of][ M][ functions of][ t][ for] every fixed s. The mean-field limit is obtained by making the ResNet infinitely wide, that is, M →∞. Considering that the right hand side of (4) has the form of an expectation, it approaches an integral in the limit, with respect to a certain probability density. Denoting this PDF by ρ(θ, t) ∈C([0, 1]; P [2])[1], and assuming that the θm are drawn from it, the ODE for z translates to the following: dz(t; x) dt _t ∈_ [0, 1] with z(0; x) = x . (7) R[k][ f] [(][z][(][t][;][ x][)][, θ][) d][ρ][(][θ, t][)][,] Mimicking (5), we define the following cost function in the mean-field setting: 1 _E(ρ) = Ex_ _µ_ _,_ (8) _∼_ 2 [(][g][(][Z][ρ][(1;][ x][))][ −] _[y][(][x][))][2]_ where Zρ(t; x) is the solution to (7) for a given ρ. Then, similar to the gradient flow for ΘL,M and Θ(t), the probability distribution ρ that encodes the configuration of θ flows in the descending direction of E(ρ) in pseudo-time s. Since ρ(θ, t, s) needs to be a probability density for all s and t, its evolution in s is characterized by a gradient flow in the Wasserstein metric (Chizat & Bach, 2018; Lu et al., 2020; Ding et al., 2021): _∂ρ_ _∂s_ [=][ ∇][θ][ ·] _δE_ _ρ_ _θ_ _∇_ _δρ_ _s > 0, t_ [0, 1] with _ρ(θ, t, 0) = ρini(θ, t),_ (9) _∈_ _ρ(·,·,s)_ where _[δE]δρ_ [is the functional derivative with respect to][ ρ][, and thus a function of][ (][θ, t][)][ for every fixed][ s][.] Using the classical calculus-of-variations method, this functional derivative can be computed as: _δE_ _δρ_ (θ, t) = Ex _µ_ _p[⊤]ρ_ [(][t][;][ x][)][f] [(][Z][ρ][(][t][;][ x][)][, θ][)] _,_ (10) _∼_ where pρ(·; x), parameterized by x, maps [0, 1] → R[d], and is a vector solution to the following ODE: dp[⊤]ρ dt = −p[⊤]ρ (11) R[k][ ∂][z][f] [(][Z][ρ][, θ][)][ρ][(][θ, t][) d][θ .] 1A collection of probability distribution that is continuous in t and has bounded second moment in θ for all t. The definition is to be made rigorous in Def 4.1. ----- with pρ(t = 1; x) = (g(Zρ(1; x)) _y(x))_ _g(Zρ(1; x)). In the later sections, to emphasize the s_ _−_ _∇_ dependence, we use _[δE][(Θ(]δΘ_ _[s][))]_ and _[δE][(]δρ[ρ][(][s][))]_ to denote _[δE]δΘ_ Θ(s;·) [and][ δE]δρ _ρ(·,·,s)_ [respectively. As a] summary, to update ρ(θ, t, s) to ρ(θ, t, s + δs) with an infinitesimal δs, we solve (7) for Zρ(t; x), using the given ρ(θ, t, s), and compute pρ using (11). This then allows us to compute _[δE][(]δρ[ρ][(][s][))]_ (θ, t) which, in turn, yields ρ(θ, t, s + δs) from (9). In (11), ∂zf is a d _d matrix that stands for the_ _×_ Jacobian of f with respect to its z argument. 3 RELATED WORK AND CONTRIBUTION There is a vast literature addressing the overparameterization of DNN. Many perspectives have been taken to justify the success of the application of the first order (gradient descent) optimization methods, in this overparameterized regime. We briefly review related works, and identify our contribution. The earliest approach to understanding overparametrization was landscape analysis, in which the countours of the nonconvex objective function were studied to find which properties make it possible for a first order method to converge to the optimizer. Different NN structures are then analyzed to see which have these properties (Jin et al., 2017; Ge et al., 2015; Du et al., 2017; Ge et al., 2018; Nguyen & Hein, 2018; Du & Lee, 2018; Soltanolkotabi et al., 2019; Nguyen & Hein, 2017; Kawaguchi, 2016; Yun et al., 2018). This approach naturally limits the types of DNN that can be “explained,” since most DNN structures do not satisfy the required properties. Another approach taken in the literature is related to the Neural Tangent Kernel (NTK) regime, which is the regime in which the nonlinear problem is reduced to a nearly linear model due to the confinement of the iterates to a small region around the initial values. Insensitivity of the so-called Gram matrix is evaluated in the limit of the number of weights (Allen-Zhu et al., 2019; Du et al., 2019a; Zhang et al., 2019; Chatterji et al., 2021; Du et al., 2019b; Jacot et al., 2018; Liu et al., 2020; Frei et al., 2019). The argument is that zero-loss solutions are close to every point in the space, and one can find an optimal point within a small region of the initial guess. The NTK arguments are shown to work well in several real application problems, such as the classification problem (Li & Liang, 2018; Zou et al., 2019). However, as pointed out by (Ba et al., 2020; Wei et al., 2019; Fang et al., 2019), NTK approximately views nonlinear DNN as a linear kernel model, a rather limited description, so the estimates obtained through NTK might not be sharp. Indeed, the empirical observation in (Allen-Zhu & Li, 2019; Arora et al., 2019) have suggested that the kernel models are not as general as NN, and certain (nonlinear) features of NN are not captured. Finally, there is the mean-field limit perspective that we adopt in this paper. The term “mean-field" indicates that in a system with a large ensemble of particles, the field formed by averaging across all samples exerts a force on each sample. Instead of tracing the trajectory of each sample, one can characterize the evolution of the full distribution function that represents the field. This idea originated in statistical physics, and is made rigorous under the framework of kinetic theory. In training an overparametrized ResNet context, a large number of weights evolve to decrease the cost function. In the mean-field limit, the training process evolves the distribution function of these weights. A significant advantage of the mean-field approach is that once we derive a formula for the gradient flow, standard PDE techniques can be adopted to describe the convergence behavior. This approach was taken in (Araújo et al., 2019; Fang et al., 2019; Nguyen, 2019; Du et al., 2019a; Chatterji et al., 2021; Chizat & Bach, 2018; Mei et al., 2018; Wojtowytsch, 2020; Lu et al., 2020; Sirignano & Spiliopoulos, 2021; 2020). The case of a single hidden layer NN in the regime as M →∞ is studied by Chizat & Bach (2018); Mei et al. (2018); Wojtowytsch (2020), who justified the mean-field approach and demonstrated convergence of the gradient flow process to a zero objective. In the multi-layer case, Lu et al. (2020) showed the convergence of a PDE that can be viewed as a modified version of the true gradient flow, hinting at convergence of the real mean-field limit. Nguyen & Pham (2021) also gave the global convergence of the mean-field limit of DNN for a certain class of NN structures, but their work excludes such important practical NN structures as ResNet. The work most closely related to ours is (Ding et al., 2021), but this paper makes technical assumptions on ρ and f that restrict _∞_ the usefulness of the results, as we discuss below following the statement of Theorem 3.1. We note that in certain parameter regimes, the mean-field and NTK perspectives can sometimes be unified; see (Chen et al., 2020). ----- We follow the roadmap of Chizat & Bach (2018); Ding et al. (2021), which shows that the PDE (9) achieves the global minimum for which E(ρ(θ, t, s = ∞)) = 0, and that the gradient flow in the discrete setting (3) can be closely approximated by the PDE, so that E(ΘL,M (s)) _E(ρ(_ _,_ _, s)). These_ _≈_ _·_ _·_ two results together show that E(ΘL,M (s)) 0 for pseudo-time s sufficiently large. Specifically, _≈_ the two main tasks of the paper are as follows. – Task 1: We need to give a rigorous proof of the continuous and mean-field limit. This will be stated in Theorem 5.1, to justify that for every fixed s < ∞, when M, L →∞, _E(ΘL,M_ (s)) _E(Θ(s;_ )) _E(ρ(_ _,_ _, s)). The dependence of these approximations on L_ _≈_ _·_ _≈_ _·_ _·_ and M are made precise. – Task 2: We need to demonstrate the convergence to global minimum. This is stated in Theorem 6.1 and 6.2, for two different cases. In both theorems, we obtain the global convergence for the gradient flow, assuming certain homogeneity and the Sard-type regularity for f . A weak assumption of the initialization of ρini is also imposed. By combining these two, we obtain the main result of the paper. **Theorem 3.1 Let the conditions in Theorem 5.1 and 6.1 (or 6.2) hold. Then for any positive ϵ and η,** _there exist positive constants C0 depending on ρini(θ, t), ϵ and C depending on ρini(θ, t), s such that_ _when_ _s > C0(ρini(θ, t), ϵ),_ _M > [C][(][ρ][ini][(][θ, t][)][, s][)]_ _,_ _L > [C][(][ρ][ini][(][θ, t][)][, s][)]_ _,_ _ϵ[2]η_ _ϵ_ _we have_ P (|E(ΘL,M (s))| ≤ _ϵ) ≥_ 1 − _η,_ _where E is defined in (2) and ΘL,M solves (3)._ This theorem gives quantitative bounds for M and L. The number of weights required to reduce the cost function below ϵ is O(ML) = O(1/ϵ[3]). The theorem also suggests that L and M are independent parameters. The results resonate with those obtained in (Chizat & Bach, 2018) for the 2-layer NN, and extend those in (Ding et al., 2021) greatly. Specifically, compared with the results in (Chizat & Bach, 2018), where ρ(θ, s) follows a typical gradient flow in the probability space on θ in time s (Ambrosio et al., 2008), we have, at each training time s, a “list” of probability measures ρ(θ, t) on θ, for all t. The members of this list are coupled, flowing together in s in the descending direction of the cost function _E. New analytical estimates are developed to deal with this non-traditional gradient flow._ Ding et al. (2021) takes a similar approach to ours, but their assumptions on the support of ρ(θ, t, s = _∞) are quite strong: The limiting probability measure ρ(θ, t, s = ∞) is assumed to have the_ full support over θ. The assumption greatly reduces the technical difficulty of the proof, but it is impractical and hard to justify, thus preventing the results from being of practical use. In the current paper, this support condition is replaced by the well-accepted homogeneity condition adopted by (Chizat & Bach, 2018). As a consequence, the structure of the gradient flow must be examined closely to demonstrate convergence, requiring considerable technical complications. Lu et al. (2020) also investigates gradient flow for training multi-layer neural network, but the gradient flow structure is modified for mathematical convenience. All blocks are integrated together, making ρ a probability measure over the full (θ, t)-space. This design is inconsistent with the structure of the ResNet design that we investigate in this paper. 4 NOTATIONS, ASSUMPTIONS, AND DEFINITIONS Throughout the paper we denote the collection of probability distributions with bounded second moments as P [2](R[k]), that is, P [2](R[k]) = {ρ : R[k][ |][θ][|][2][ d][ρ][(][θ][)][ <][ ∞}][. We assume certain regularity] properties for the activation function f, the measuring function g, the data y, and the input measure _µ, as follows._ R **Assumption 4.1 (Assumptions on f** **) Let f : R[d]** _× R[k]_ _→_ R[d] _be a C[2]_ _function._ _1. (linear growth) For all x ∈_ R[d], θ ∈ R[k], there is a constant C1 such that _f_ _C1(_ _θ_ + 1)( _x_ + 1) . (12) _|_ _| ≤_ _|_ _|[2]_ _|_ _|_ ----- _2. (locally Lipschitz) For all r > 0, and |x| < r, θ ∈_ R[k], we have for C2(r) monotonically _increasing with respect to r that the following bounds hold:_ _∂xf_ _C2(r)(_ _θ_ + 1), _∂θf_ _C2(r)(_ _θ_ + 1) . (13) _|_ _| ≤_ _|_ _|[2]_ _|_ _| ≤_ _|_ _|_ _3. (local smoothness) There exists k1_ (0, k] with the following property: Denoting θ = (monotonically increasing with respect toθ[1], θ[2]), r = max{|x|, |θ[1]|}, where ∈ _r θ that the following bounds hold:[1] ∈_ R[k][1], θ[2] ∈ R[k][−][k][1], we have for C3(r) _∂x[i]_ _[∂]θ[j][f]_ [(][x, θ][)] _≤_ _C3(r),_ _i + j = 2, i, j ≥_ 0 . (14) _When k1 < k, we have in addition that_ max _∂xf_ _,_ _f_ _C3(r)_ _θ[2]_ + 1 _,_ _∂θ[1]_ _f_ _C3(_ _x_ ) _θ[1]_ + 1 _._ (15) _{|_ _|_ _|_ _|} ≤_ _|_ _|_ _≤_ _|_ _|_ _|_ _|_ _4. (universal kernel) The function set_ _h_ _h =_ _is dense in_ R[k][ f] [(][x, θ][) d][ρ][(][θ][)][, ρ][ ∈P] [2][(][R][k][)] _x_ _< R; R[d][]_ _for all R > 0._ _C_ _|_ _|_ R **Assumption 4.2 (Assumptions on data) ** _Let g, y : R[d]_ _→_ R be C[2] _functions, and let µ be the_ _probability distribution of x. We assume the following._ _5. µ(x) is compactly supported, meaning that there is Rµ > 0 such that the support of µ is_ _within a ball of size Rµ around the origin, that is, supp(µ) ⊂BRµ_ ([⃗]0). _6. y(x)_ _L[∞]loc[(][R][d][)][, that is,][ sup]_ _x_ _R_ _∈_ _|_ _|≤_ _[|][y][(][x][)][|][ <][ ∞][.]_ _7. gthat is,(x) and inf ∇x∈gR(xd |∇) are Lipschitz continuous. Moreover,g(x)| > 0._ _|∇g(x)| has a positive lower bound,_ We note that Assumption 4.1 admits many commonly used activation functions (E et al., 2020). One example of a function satisfying this assumption is f (x, θ) = f (x, θ[1], θ[2], θ[3]) = θ[3]σ(θ[1]x+θ[2]), wherefunction, see Remark H.2. θ[1] ∈ R[d][×][d], θ[2] ∈ R[d], θ[3] ∈ R and σ is a component-wise regularized ReLU activation We now build the metric on the function space for our solutions. Note that the solution ρ(θ, t, s) to (9) is expected to be a continuous function in (t, s), and a distribution of θ for each (t, s). For this non-standard probability space, we first introduce the following metric. **Definition 4.1** [2] _C([0, 1]; P_ [2]) is a collection of continuous paths of probability distribution ν(θ, t) (limθ ∈t Rt0[k] W, t ∈2 (ν[0( _,, t 1])), ν where 1.(_ _, t0)) = 0 ν(·, where, t) ∈P W[2](R2 is the classical Wasserstein-2 distance. The space[k]) for every fixed t ∈_ [0, 1]; 2. For any t0 ∈ [0, 1], _→_ _·_ _·_ _C([0, 1]; P_ [2]) is equipped with the following metric d1 (ν1, ν2) = supt W2(ν1(·, t), ν2(·, t)). _Accordingly, C([0, ∞); C([0, 1]; P_ [2])) is a collection of continuous paths of probability distribution _ν(θ, t, s) (with θ ∈_ R[k], t ∈ [0, 1], s ∈ [0, ∞)), where 1. ν(·, ·, s) ∈C([0, 1]; P [2]) for every fixed _s_ [0, ). 2. For any s0 [0, ), lims _s0 d1 (ν(_ _,_ _, s), ν(_ _,_ _, s0)) = 0 (where d1 is defined above)._ _The metric in ∈_ _∞_ _C([0, ∞); C ∈([0, 1]; ∞ P_ [2])) is defined by→ _d·_ _·2 (ν1, ν2·_ ) = sup · _t,s W2(ν1(·, t, s), ν2(·, t, s))._ Since P [2] is complete in W2 distance, C([0, 1]; P [2]) and C([0, ∞); C([0, 1]; P [2])) are complete metric spaces under d1 and d2 respectively also. To give a rigorous justification of the mean-field limit, we use the particle representation of ρ(θ, t, s). Thus, at least we need to assume that we can find a stochastic process that is drawn from the initial condition ρini(θ, t). We call such initial conditions _admissible._ **Definition 4.2 We call a continuous path of probability distribution ν(θ, t) ∈C([0, 1]; P** [2]) admissible if it has a particle representation, namely there exists a continuous stochastic process _θ(t) : [0, 1] →_ R[k] _and r > 0 such that for any t0 ∈_ [0, 1], we have _θ(t0)_ _ν(θ, t0),_ lim _θ(t)_ _θ(t0)_ = 0, _θ(t0)_ _< r ._ (16) _∼_ _t→t0_ [E] _|_ _−_ _|[2][]_ _|_ _|_ 2 _C([0, T_ ]; A) is defined to be the set of functions f (a, t) such that for any t ∈ [0, T ], f (·, t) ∈A and f (·, t) is continuous with respect to t under the metric defined on A. In Definition 4.1, we set T = 1 and A = P [2], where the natural metric on A is W2. ----- _Furthermore, ν(θ, t) is called limit-admissible if its M_ _-averaged trajectory is bounded and Lipschitz_ _with high probability. (See the rigorous definition in Definition E.1.)_ We note that without the dependence on t, probability distributions are “admissible", in the sense that one can draw a sample from a given distribution. In Appendix A, we show that if the initial condition _ρini(θ, t) is admissible, (9) has a unique solution ρ(θ, t, s) that is admissible for each s._ The global convergence result depends on Sard-type regularity, defined as follows. **Definition 4.3 Given a metric space Θ, a differentiable function h : Θ →** R, and a subset Θ ⊂ Θ, _we say h satisfies Sard-type regularity in_ Θ if the set of regular values[3] _of h|Θ_ _[is dense in its range,]_ _where h|Θ_ [:][ e]Θ → R is a confinement of h in Θ. e [e] [e] **Remark 4.1e** _This regularity assumption is not a common one; we have adopted it from Chizat &_ [e] _Bach (2018). This property is essentially that most of the points in the range of h lie in an open set_ _and h is locally monotonic. The assumption is rather mild and can be satisfied by most commonly_ _seen regular functions, unless the function oscillates wildly._ 5 MEAN-FIELD AND CONTINUOUS LIMIT In this section, we focus on the justification of mean-field and continuous-limit result. This is to prove that E(ρ( _,_ _, s)), E(Θ(s;_ )), and E(ΘL,M (s)) are asymptotically close to each other for every s. In _·_ _·_ _·_ the next section, we prove convergence of E(ρ(·, ·, s)) as s →∞. To show the asymptotic equivalence of the three quantities, we need to compare (3), (6), and (9), and take the measurement in E according to (2), (5) and (8). **Theorem 5.1 Suppose that Assumptions 4.1 and 4.2 are satisfied. Assume that ρini(θ, t) is limit-** _admissible and suppθ(ρini(θ, t))_ _θ_ _θ[1]_ _R_ _with some R > 0 for all t_ [0, 1]. Let _⊂{_ _||_ _| ≤_ _}_ _∈_ _{θm(0; t)}m[M]=1_ _[in][ (6)][ be][ i.i.d.][ drawn from][ ρ][ini][(][θ, t][)][. Let]_ - ΘL,M (s) = _θl,m(s)_ _be the solution to (3) with initial condition θl,m(s = 0) =_ _{_ _}_ _θm_ 0; _L[l]_ _;_ - θm( s; t) be the solution to (6) with the initial condition θm(0; t); - ρ(θ, t, s) be the solution to (9) with initial condition ρini(θ, t). _Then for any positive ϵ, η, and S, there exists a constant C > 0 that depends on ρini(θ, t) and S such_ _that when_ _M > [C][(][ρ][ini][(][θ, t][)][, S][)]_ _,_ _L > [C][(][ρ][ini][(][θ, t][)][, S][)]_ _,_ _s < S,_ _ϵ[2]η_ _ϵ_ _we have:_ min{P (|E(ΘL,M (s)) − _E(Θ(s; ·))| ≤_ _ϵ/2), P (|E(Θ(s; ·)) −_ _E(ρ(·, ·, s))| ≤_ _ϵ/2)} ≥_ 1 − [1]2 _[η .]_ _It follows that_ P (|E(ΘL,M (s)) − _E(ρ(·, ·, s))| ≤_ _ϵ) ≥_ 1 − _η,_ _∀s < S ._ _Here E(ΘL,M_ (s)), E(Θ(s; )), and E(ρ( _,_ _, s)) are defined in (2), (5), and (8), respectively._ _·_ _·_ _·_ The proof of this result appears in Appendix E. This theorem suggests that for every fixed S > 0, the gradient descent of ΘL,M is approximately the same as the gradient flow of ρ(θ, t), in the sense that the two costs are close to each other with high probability, when L and M are sufficiently large. The size of the ResNet depends negative-algebraically on ϵ (the desired accuracy) and η (the confidence of success). The result translates the evolution (gradient descent) of ΘL,M to the evolution (gradient flow) of ρ(θ, t), and thus matches the zero-loss property of the parameter configuration of a finite sized ResNet to its limiting PDE, whose analysis can be performed with standard PDE tools. 3For a function h : Θ → R, a regular value is a real number α in the range of h such that h[−][1](α) is included in an open set where h is differentiable and where dh does not vanish. e ----- The proof of Theorem 5.1 divides naturally into two components. We show that for all s < S, _E(ρ(_ _,_ _, s))_ _E(Θ(s;_ )) and E(Θ(s; )) _E(ΘL,M_ (s)) with high probability. The former is _·_ _·_ _≈_ _·_ _·_ _≈_ obtained from mean-field limit theory, justifying that the particle trajectory θm(t, s) follows ρ(θ, t, s) for all t in pseudo-time s ∈ [0, S]. The latter makes use of continuity in t and traces the differences between θm( _L[l]_ [)][ and][ θ][l,m][. These two components of the proof are summarized in Theorems E.1 and] E.2, respectively. According to the formula of the Fréchet derivatives (10) and (11), the estimates in these theorems naturally route through the boundedness of pρ, pΘ, pΘL,M, and similarly Zρ,Θ,ΘL,M . It is technically demanding to derive these bounds, but they are not surprising. We dedicate a large portion of the appendix to addressing the well-posedness of these systems. See Appendices A-D, where we show these equations have unique solutions with proper initial conditions, along with the required bounds. Naturally, these estimates depend on regularity of f, g, y, and µ. To gain some intuition for the equivalence between (6) and (9), we test them on the same smooth function h(θ). To test (9), we multiply both sides by h and perform integration by parts to obtain dds R[k][ h][ d][ρ][(][θ][) =][ −] R[k][ ∇][θ][h][∇][θ] _δE(δρρ(s))_ dρ. This is to say dds [E][(][h][) =][ E] _∇θh∇θ_ _δE(δρρ(s))_ . 1 _M_ Testing hR on (6) also gives the same formula.R Supposing that ρ = _M_ m=1 _[δ][θ]m[, we have]_ dds [E][(][h][) =] _M1_ _Mm=1_ ds _[θ][m][ =][ −]_ [P]m[M]=1 _δθm_ [.] The right hand side is alsoP E _∇θh∇θ_ _δE(δρρP(s))_ if and only if[∇][θ][h][(][θ][m][)][ d] _M_ _[δE][(Θ(]δθm[s][;][·][))]_ = ∇[∇]θ[θ]δE[h]δρ[(]([θ]ρ[m]) [(][)][θ][ δE][m][, t][)][. This will be shown to hold] true in Appendix F. 6 CONVERGENCE TO GLOBAL MINIMIZER After translating the study of ΘL,M to the study of ρ(θ, t), this section presents results on when and how E(ρ) converges to zero loss by examining the conditions for the global convergence of (9). We first identify the property of global minimum. **Proposition 6.1a measure ν(θ) of Suppose that R[k]** _such that ρ ∈CR[k][ d]([0[ν][(], 1];[θ][) = 0] P_ [2])[ and] has E(ρ) > 0. Then for any t0 ∈ [0, 1], there exists R _δE_ R[k] _δρ_ (θ, t0) dν(θ) < 0 . (17) See Appendix H.1 for the proof of this result. At the stationary point of the cost function, _[δE]δρ_ [(][θ, t][0][) =] 0, then there is no ν satisfying (17), so E(ρ) is necessarily trivial. Our task now becomes to check under what conditions on f we can have _[δE]δρ_ [becoming][ 0][ as][ s][ →∞][. We give two possibilities, both] requiring a separation initialization and certain homogeneities. In the first case, we require f to be 2-homogeneous, and the result is collected in Section 6.1. In the second case, we require f to be partially 1-homogeneous; see Section 6.2. 6.1 THE 2-HOMOGENEOUS CASE The results in this section are obtained under the following assumption on f . (Functions can be designed to satisfy this assumption easily; see Remark H.1.) **Assumption 6.1 The function f** (x, θ) : R[d] _× R[k]_ _is 2-homogeneous, meaning that f_ (x, λθ) = _λ[2]f_ (x, θ) for all (x, θ, λ) ∈ R[d] _× R[k]_ _× R._ **Theorem 6.1 Let Assumption 6.1 and conditions of Theorem 5.1 hold true with k1 = k. Let ρ** (θ, t) _∞_ _be the long-time limit of (9), that is, ρ(θ, t, s) converges to ρ_ (θ, t) in ([0, 1]; ) as s _. Then_ _∞_ _C_ _P_ [2] _→∞_ _E(ρ_ ) = 0 if the following hold: _∞_ - Separation initialization: There exists t0 [0, 1] such that ρini(θ, t0) separates[4] _the spheres_ _raS[k][−][1]_ _and rbS[k][−][1], for some 0 < ra < r ∈b._ 4We say that a set C separates the sets A and B if any continuous path in with endpoints in A and B intersects C. ----- - Sard-type regularity: _[δE]δρ_ _ρ∞_ [(][θ, t][0][)][ satisfies the Sard-type regularity condition in][ S][k][−][1][.] A proof appears in Appendix H.2. A corollary of this theorem, when combined with Theorem 5.1 with k1 = k, gives Theorem 3.1, the main result of our paper. 6.2 THE PARTIALLY 1-HOMOGENEOUS CASE The following assumption is used in this section. (Functions that satisfy this assumption include regularized ReLU; see Remark H.2.) **Assumption 6.2 Let θ = (θ[1], θ[2]) with θ[1] ∈** R and θ[2] ∈ R[k][−][1]: _1. (partially 1-homogeneous in θ) f can be written as f_ (x, θ) = _f_ (x, θ[1], θ[2]) = _θ[1]f_ (x, θ[2]), _2. (locally bounded and smooth) For any r > 0,_ _f_ (x, θ[2]) is bounded and Lipschitz with [b] _Lipschitz continuous differential for (x, θ[2]) ∈Br([⃗]0) × R[k][−][1]._ [b] When Assumption 6.2 holds true, Assumption 4.1 part 3 can be satisfied with k1 = 1. Then, we introduce the main result in this section.: **Theorem 6.2 Let Assumption 6.2 and conditions of Theorem 5.1 hold true with k1 = 1. Let ρ** (θ, t) _∞_ _be the limit of (9) as s_ _. Then E(ρ_ ) = 0 if the following hold: _→∞_ _∞_ - Separation initialization: There exists t0 [0, 1] such that ρini(θ[1], θ[2], t0) separates the _∈_ _spheres {−r0} × R[k][−][1]_ _and {r0} × R[k][−][1]_ _for some r0 > 0, where θ[1], θ[2] are defined by_ _Assumption 4.1 item 3 with k1 = 1._ - Sard-type regularity: _δEδρ_ _ρ∞_ [((1][, θ][[2]][)][, t][0][) :][ R][k][−][1][ →] [R][ satisfies the Sard-type regularity] _condition._ - For any ˜ρ ([0, 1], ), define Hr,ρ˜ _θ[2]_ = _δEδρ(ρ)_ 1, rθ[e][2], t0 _where θ[2] = rθ[˜][2]_ _∈C_ _P_ [2] _ρ˜_ _with r =_ _θ2_ _and_ _θ[˜][2]_ S[k][−][2]. Suppose that Hr,ρ˜ _[converges in]_ _[ C][1][(][S][k][−][2][)][ as][ r][ →∞]_ _[to a]_ _function H |_ _∞|,ρ˜[. Furthermore, assume that] ∈_ e[ H]∞,ρ∞ _[satisfies the Sard-type regularity condi-]_ _tion in S[k][−][2]_ _and that the intersection of regular values of H∞,ρ∞_ _and_ _[δE]δρ[(][ρ][)]_ _ρ∞_ [(1][, θ][[2]][, t][0][)] _is also dense in the intersection of their range._ The proof is found in Appendix H.3. This result, combined with Theorem 5.1 in the case of k1 = 1, gives the main result in Theorem 3.1. The assumptions in Theorem 6.2 are rather technical and seemingly tedious. However, we note that only the first two assumptions — 1-homogeneous and the separation assumption — are crucial. The third and fourth assumptions concern the regularity of the Fréchet derivative of ρ; they are rather mild and serve to exclude wildly oscillating functions; see Remark 4.1. Most commonly seen functions are regular enough that these two assumptions are satisfied. 7 ETHICS STATEMENT This work does not present any foreseeable societal consequence. 8 REPRODUCIBILITY STATEMENT The notations, assumptions and definitions are clarified in Section 4. And all proofs appear in the Appendix. ----- REFERENCES Z. Allen-Zhu and Y. Li. What can ResNet learn efficiently, going beyond kernels? In Advances in _Neural Information Processing Systems, volume 32, 2019._ Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization. In _Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings_ _of Machine Learning Research, pp. 242–252. PMLR, 09–15 Jun 2019._ L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space of probability _measures. Springer Science and Business Media. Birkhäuser Basel, 2008._ D. Araújo, R. Oliveira, and D. Yukimura. A mean-field limit for certain deep neural networks. _arXiv/1906.00193, 2019._ S. Arora, S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an infinitely wide neural net. In NeurIPS, 2019. J. Ba, M. Erdogdu, T. Suzuki, D. Wu, and T. Zhang. Generalization of two-layer neural networks: An asymptotic viewpoint. In ICLR, 2020. N. Chatterji, P. Long, and P. Bartlett. When does gradient descent with logistic loss interpolate using deep networks with smoothed relu activations? arXiv/2102.04998, 2021. Z. Chen, Y. Cao, Q. Gu, and T. Zhang. A generalized neural tangent kernel analysis for twolayer neural networks. In Advances in Neural Information Processing Systems, volume 33, pp. 13363–13373, 2020. L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In Advances in Neural Information Processing Systems, volume 31, 2018. Z. Ding, S. Chen, Q. Li, and S. Wright. Overparameterization of deep resnet: zero loss and mean-field analysis. arXiv/2105.14417, 2021. S. Du and J. Lee. On the power of over-parametrization in neural networks with quadratic activation. In _Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings_ _of Machine Learning Research, pp. 1329–1338. PMLR, 10–15 Jul 2018._ S. Du, C. Jin, J. Lee, M. Jordan, A. Singh, and B. Póczos. Gradient descent can take exponential time to escape saddle points. In Advances in Neural Information Processing Systems, volume 30, 2017. S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural networks. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 1675–1685, 09–15 Jun 2019a. S. Du, X. Zhai, B. Póczos, and A. Singh. Gradient descent provably optimizes over-parameterized neural networks. In International Conference on Learning Representations, 2019b. W. E, C. Ma, S. Wojtowytsch, and L. Wu. Towards a mathematical understanding of neural networkbased machine learning: what we know and what we don’t. arXiv/2009.10713, 2020. C. Fang, Y. Gu, W. Zhang, and T. Zhang. Convex formulation of overparameterized deep neural networks. arXiv/1911/07626, 2019. S. Frei, Y. Cao, and Q. Gu. Algorithm-dependent generalization bounds for overparameterized deep residual networks. In NeurIPS, 2019. R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points — online stochastic gradient for tensor decomposition. In Proceedings of The 28th Conference on Learning Theory, volume 40 of _Proceedings of Machine Learning Research, pp. 797–842. PMLR, 03–06 Jul 2015._ R. Ge, J. Lee, and T. Ma. Learning one-hidden-layer neural networks with landscape design. In _International Conference on Learning Representations, 2018._ ----- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in Neural Information Processing Systems, volume 31, 2018. C. Jin, R. Ge, P. Netrapalli, S. Kakade, and M. Jordan. How to escape saddle points efficiently. In _Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings_ _of Machine Learning Research, pp. 1724–1732. PMLR, 06–11 Aug 2017._ K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information _Processing Systems, volume 29, 2016._ Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. In Proceedings of the 32nd International Conference on Neural Information _Processing Systems, NIPS’18, pp. 8168–8177, 2018._ C. Liu, L. Zhu, and M. Belkin. On the linearity of large non-linear models: when and why the tangent kernel is constant. In Advances in Neural Information Processing Systems, volume 33, pp. 15954–15964, 2020. Y. Lu, C. Ma, Y. Lu, J. Lu, and L. Ying. A mean field analysis of deep ResNet and beyond: Towards provably optimization via overparameterization from depth. In Proceedings of the 37th _International Conference on Machine Learning, volume 119, pp. 6426–6436, 13–18 Jul 2020._ S. Mei, A. Montanari, and P. M. Nguyen. A mean field view of the landscape of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018. P. M. Nguyen. Mean field limit of the learning dynamics of multilayer neural networks. _arXiv/1902.02880, 2019._ P. M. Nguyen and H. Pham. A rigorous framework for the mean field limit of multilayer neural networks. arxiv/2001.11443, 2021. Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks. In Proceedings of _the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine_ _Learning Research, pp. 2603–2612. PMLR, 06–11 Aug 2017._ Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep cnns. In ICML, 2018. J. Sirignano and K. Spiliopoulos. Mean field analysis of neural networks: A law of large numbers. _SIAM Journal on Applied Mathematics, 80(2):725–752, 2020._ J. Sirignano and K. Spiliopoulos. Mean field analysis of deep neural networks. Mathematics of _Operations Research, 2021. doi: 10.1287/moor.2020.1118._ M. Soltanolkotabi, A. Javanmard, and J. Lee. Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. IEEE Trans. Inf. Theor., 65(2):742–769, February 2019. ISSN 0018-9448. C. Wei, J. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization and optimization of neural nets v.s. their induced kernel. In NeurIPS, 2019. S. Wojtowytsch. On the convergence of gradient descent training for two-layer relu-networks in the mean field regime. arXiv/2005/13530, 2020. C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In _International Conference on Learning Representations, 2018._ H. Zhang, D. Yu, M. Yi, W. Chen, and T. Liu. Convergence theory of learning over-parameterized resnet: A full characterization. arXiv/1903.07120, 2019. D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep relu networks. Machine Learning, 109:467–492, 2019. ----- APPENDIX: INTRODUCTION The appendix contains proofs and supporting analysis for the theorems in the main text. We start by proving well-posedness of the ResNet ODE and the gradient flow. We then justify the continuous and mean-field limit. Finally, we prove the global convergence of the gradient-flow PDE. The sections are organized as follows. Appendix A: Well-posedness. We summarize the well-posedness of the continuous limit ODE (4), the mean-field limit ODE (7), and the associated gradient flows (3), (6), and (9). The results are collected in Theorem A.1. Appendix B: This section collects the detailed proof for the well-posedness of the ResNet ODE in its continuous limit (4), and the mean-field limit (7), and finalizes the proof of Theorem A.2. Appendix C: This section prepares some a-priori estimates for showing the well-posedness of the gradient flow equations. Appendix D: This section contains a detailed proof for the well-posedness of gradient flow equations (3) and (9) and finalizes the proofs of Theorem A.3 and A.4. Appendix E-G: Proof of Theorem 5.1, the continuous and mean-field limit. Section E lays out the structure of the proof, Section F shows the continuous limit, and Section G shows the mean-field limit. Appendix H: Proof of Theorem 6.1 and 6.2: Global convergence of the gradient flow. The analytical core of the paper lies in Appendices H and E, which describe properties of the gradient flow PDEs and explain why the gradient descent method for ResNet can be explained by these equations. The technical results of Appendix B-D can be skipped by readers who are interested to proofs of the main results. Throughout, we denote by C(·) a generic constant whose value depends only on its arguments. The precise value of this constant may change each time it is invoked. Throughout Appendices A-G, we assume that Assumption 4.1 holds for some 0 < k1 _k._ _≤_ A WELL-POSEDNESS RESULT In this section, we show the well-posedness of ODEs (4), (7) and gradient flows (3), (6), and (9). **Theorem A.1 The following claims hold.** _– Well-posedness of ODE:_ - If {θm(t)}m[M]=1 _[is continuous, then][ (4)][ has a unique][ C][1][solution.]_ - If ρ ∈C([0, 1]; P [2]), then (7) has a unique C[1] _solution._ _– Well-posedness of gradient flow:_ - (3) has a unique solution. - If {θm(0; t)}m[M]=1 _[is continuous, then][ (6)][ has a unique solution][ {][θ][m][(][s][;][ t][)][}]m[M]=1_ _[that is continuous]_ _in (s, t)._ - If ρini(θ, t) is admissible and suppθ(ρini(θ, t)) _θ_ _θ[1]_ _R_ _with some R > 0 for all t_ _⊂{_ _||_ _| ≤_ _}_ _∈_ [0, 1], then (9) has a unique solution ρ(θ, t, s) in C([0, ∞); C([0, 1]; P [2])) with initial condition _ρini(θ, t). Furthermore, for each s, ρ(θ, t, s) is admissible._ Note that the well-posedness of (4) and (6) are direct corollaries of that of (7), (3), and (9) (the corresponding continuous versions), according to Remark A.1, A.2. Thus, we merely prove wellposedness on the continuous level, in Theorems A.2, A.3, and A.4. Specifically, - Theorem A.2 (Appendix A.1) shows the well-posedness of the dynamical system for z; - Theorems A.3 and A.4 (Appendix A.2) justify the well-posedness of the gradient flow of the parameter configuration. ----- A.1 WELL-POSEDNESS OF THE OID (7) As L and M approach ∞, z satisfies the ordinary-integral equation (7). We justify that this differential equation is well-posed, in the sense that the solution is unique and stable. **Theorem A.2 Suppose that Assumption 4.1 holds with and that x is in the support of µ, then (7) has** _a unique_ _solution. Specifically, for ρ1, ρ2_ ([0, 1]; ), we have _C[1]_ _∈C_ _P_ [2] _Zρ1_ (t; x) _C(_ 1), (18) _|_ _| ≤_ _L_ _and for all t ∈_ [0, 1]: _Zρ1_ (t; x) _Zρ2_ (t; x) _C(_ 1, 2)d1(ρ1, ρ2), (19) _|_ _−_ _| ≤_ _L_ _L_ _where Li are the second moments of 1 ρi, that is,_ _Li =_ 0 R[k][ |][θ][|][2][dρ][i][(][θ, t][) d][t,] _i = 1, 2._ (20) Z Z We leave the proof to Appendix B. Besides the well-posedness result, the theorem also suggests that a small perturbation to ρ is reflected linearly in Zρ, the solution to (7). This means that a small perturbation in the parameterization of the ResNet leads to only a small perturbation to the ResNet output. **Remark A.1 Although we do not directly show the well-posedness of (4), it follow immediately from** _Theorem A.2. One way to make this connection is to reformulate the discrete probability distribution_ _as_ _ρ[dis](θ, t) = [1]_ _δθm(t)(θ),_ _m=1_ X _where Θ(t) = {θm(t)}m[M]=1_ _[is the list of trajectories. Since][ θ][m][(][t][)][ is continuous in][ t][, we have]_ _ρ[dis](θ, t) ∈C([0, 1]; P_ [2]). Since _M_ 1 _f_ (z(t; x), θm(t)) = _M_ _m=1_ ZR[k][ f] [(][z][(][t][;][ x][)][, θ][) d][ρ][dis][(][θ, t][)][,] X _using Theorem A.2, (4) has a unique C[1]_ _solution when Θ(t) is continuous._ A.2 WELL-POSEDNESS OF THE GRADIENT FLOW The gradient flow of the parameterization is also well-posed, both in the discrete setting and the continuous mean-field limit. In the discrete setting, we have the following result. **Theorem A.3 (3) has a unique solution.** Further, (9) characterizes the dynamics of the continuous mean-field limit of the parameter configuration, and is also well-posed. **Theorem A.4 If ρini(θ, t) is admissible and suppθ(ρini(θ, t))** _θ_ _θ[1]_ _R_ _with some R > 0 for_ _⊂{_ _||_ _| ≤_ _}_ _all t ∈_ [0, 1]. Then (9) has a unique solution ρ(θ, t, s) in C([0, ∞); C([0, 1]; P [2])) that is admissible _for each s. Further, we have_ dE(ρ( _,_ _, s))_ _·_ _·_ 0 . (21) ds _≤_ The proofs of these two theorems can be found in Appendix D. **Remark A.2 Using the same argument as in Remark A.1, calling** _M_ _ρ[dis](θ, t, s) = M[1]_ _δθm(s;t)(θ),_ (22) _m=1_ X _the well-posedness of (6) follows immediately from Theorem A.4. Furthermore, according to the_ _definition (5) and (8), we have_ _E_ _ρ[dis](·, ·, s)_ = E (Θ(s; ·)) . _As a consequence, if Θ(s; t) satisfies (6), then ρ[dis]_ _satisfies (9), and vice versa. The well-posedness_ _result in Theorem A.4 for (9) then can be extended to justify well-posedness of (6)._ ----- B PROOF OF THEOREM A.2 This section contains the proof of Theorem A.2. We rewrite (7) as follows: dZρ(t; x) = F (Zρ, t), _t_ [0, 1] with _z(0; x) = x,_ (23) dt _∀_ _∈_ where for a given ρ ∈C([0, 1]; P [2]) we use the notation: _F_ (z, t) = R[k][ f] [(][z, θ][) d][ρ][(][θ, t][)][ .] The proof of Theorem A.2 relies on the classical Lipschitz condition for the well-posedness of an ODE. **Proof [Proof of Theorem A.2] Since ρ ∈C([0, 1]; P** [2]), we have a constant C such that sup 0≤t≤1 ZR[k][ |][θ][|][2][ d][ρ][(][θ, t][)][ < C <][ ∞] _[.]_ For any t ∈ [0, 1], using (12) from Assumption 4.1 equation, we have _|F_ (z, t)| ≤ (24) R[k][ |][f] [(][z][1][, θ][)][|][ d][ρ][(][θ, t][)][ ≤] _[C][1][(][|][z][|][ + 1)]_ R[k] [(][|][θ][|][2][ + 1) d][ρ][(][θ, t][)][ .] Z Z To show the boundedness result (18), we multiply (23) by Zρ1 (t; x) and use (24) to obtain d|Zρ1d(tt; x)|[2] _≤2C1_ _|Zρ1_ _|[2]_ + |Zρ1 _|_ R[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)] [Z] 4C1 _Zρ1_ (t; x) + 1 _._ _≤_ _|_ _|[2]_ R[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)] Z Using Grönwall’s inequality, we have _Zρ1_ (t; x) exp 2C1 _|_ _| ≤_ 1 exp 2C1 ( _x_ + 1) _| ≤_ Z0 ZR[k][ |][θ][|][2][ d][ρ][1][ d][t][ + 1] _|_ _|_ _≤_ exp (2C1 (L1 + 1)) (|x| + 1), 1 where L1 = 0 R[k][ |][θ][|][2][ d][ρ][1][ d][t][. Since][ x][ ∈] [supp][ µ][ (so that][ |][x][|][ < R][), we have][ (18)][. This gives us an] a-priori estimate of (23). R R Next, using (13) from Assumption 4.1, we have _f_ (z1, θ) _f_ (z2, θ) _C2(_ _z1_ + _z2_ ) _θ_ + 1 _z1_ _z2_ _._ (25) _|_ _−_ _| ≤_ _|_ _|_ _|_ _|_ _|_ _|[2]_ _|_ _−_ _|_ Then, using boundedness of the second moment of θ, we have _F_ (z1, t) _F_ (z2, t) _|_ _−_ _| ≤_ R[k][ (][f] [(][z][1][, θ][)][ −] _[f]_ [(][z][2][, θ][)) d][ρ][(][θ, t][)] _C2(_ _z1_ + _z2_ ) _≤_ _|_ _|_ _|_ _|_ R[k] [(][|][θ][|][2][ + 1) d][ρ][(][θ, t][)][|][z][1][ −] _[z][2][|]_ Z _< C2(_ _z1_ + _z2_ )(C + 1) _z1_ _z2_ _,_ _|_ _|_ _|_ _|_ _|_ _−_ _|_ which implies that F (z, t) is locally Lipschitz in z for all t ∈ [0, 1]. Combining this with the a-priori estimate in (18), classical ODE theory implies that (23) has a unique C[1] solution. To prove the stability resultdenote (19), we define Zρi as in (23) parameterized by ρi ∈C([0, 1]; P [2]), and ∆(t; x) = Zρ1 (t; x) _Zρ2_ (t; x) . _−_ ----- Then by subtracting the two equations, we obtain d|∆(t; x)|[2] dt = 2 ∆(t; x), R[k][ f] [(][Z][ρ][1] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)][ −] R[k][ f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][2][(][θ, t][)] = 2 ∆(t; x), - R[k][ f] [(][Z][ρ][1] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)][ −] R[k][ f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)]+ Z Z (I) | {z } + 2 ∆(t; x), - R[k][ f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)][ −] R[k][ f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][2][(][θ, t][)] Z Z (II) We now bound (I) and (II)|. For (I), we have using (13) and (25) that{z } = 2 - + 2 ∆(t; x), (26) _|(I)| ≤2C2 (|Zρ1_ (t; x)| + |Zρ2 (t; x)|) |∆(t; x)| R[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)] Z (27) _C(_ 1, 2) ∆(t; x) _≤_ _L_ _L_ _|_ _|_ R[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)][,] Z where the second inequality comes from (18). For (II), we denote the particle representation _θ1(t) ∼_ _ρ1(θ, t) and θ2(t) ∼_ _ρ2(θ, t) such that_ E _|θ1 −_ _θ2|[2][][1][/][2]_ = W2(ρ1(·, t), ρ2(·, t)). Then (II) E ( _f_ (Zρ2 (t; x), θ1) _f_ (Zρ 2 (t ; x), θ2) ) _|_ _| ≤_ _|_ _−_ _|_ _≤_ _C2(Zρ2_ (t; x))E ((|θ1| + |θ2| + 1)|θ1 − _θ2|)_ _≤_ _C(L2)E ((|θ1| + |θ2| + 1)|θ1 −_ _θ2|)_ 1/2 _≤_ _C(L2)_ E _|θ1|[2]_ + |θ2|[2] + 1 E _|θ1 −_ _θ2|[2][][1][/][2]_ (28) _C(_ 2) E _θ1_ + _θ2_ + 11/2 W2 (ρ1( _, t), ρ2(_ _, t))_ _≤_ _L_ _|_ _|[2]_ _|_ _|[2]_ _·_ _·_ 1/2 _C(_ 2) _d1(ρ1, ρ2),_ _≤_ _L_ ZR[k][ |][θ][|][2][dρ][1][(][θ, t][) +] ZR[k][ |][θ][|][2][dρ][2][(][θ, t][) + 1] where we use mean-value theorem and (13) in the first inequality to obtain _|f_ (Zρ2 (t; x), θ1) − _f_ (Zρ2 (t; x), θ2)| ≤|∂θf (Zρ2 (t; x), θ1 + λθ2)||θ1 − _θ2|_ _C2(Zρ2_ (t; x))( _θ1_ + _θ2_ + 1) _θ1_ _θ2_ _,_ _≤_ _|_ _|_ _|_ _|_ _|_ _−_ _|_ for some λ ∈ [0, 1]. We use (18) in the second inequality of (28). Plugging (27)-(28) into (26) and using Hölder’s inequality, we obtain that d ∆(t; x) _|_ _|[2]_ _C(_ 1, 2) ∆(t; x) dt _≤_ _L_ _L_ _|_ _|[2]_ R[k][ |][θ][|][2][ d][ρ][1][(][θ, t][)] Z 1/2 + C( 2) ∆(t; x) _d1(ρ1, ρ2)_ _L_ _|_ _|_ ZR[k][ |][θ][|][2][dρ][1][(][θ, t][) +] ZR[k][ |][θ][|][2][dρ][2][(][θ, t][) + 1] _≤C(L1, L2)_ _|∆(t; x)|[2]_ + d[2]1[(][ρ][1][, ρ][2][)] _,_ R[k][ |][θ][|][2][dρ][1][(][θ, t][) +] R[k][ |][θ][|][2][dρ][2][(][θ, t][) + 1] where we used Young’s inequality in the last line. SinceZ Z _|∆(0; x)| = 0, we complete the proof of _ (19) using Grönwall’s inequality. C A-PRIORI ESTIMATION OF THE COST FUNCTION Some a-priori estimates are necessary in the proof for the main theorems. We first consider the case when f satisfies only Assumption 4.1 with 0 < k1 _k. (Better a-priori estimates can be obtained_ when f also satisfies the homogeneity properties of Sections 6.1 or 6.2.) ≤ ----- C.1 A-PRIORI ESTIMATE FOR GENERAL f According to (10), the Fréchet derivative can be computed, similarly to (Lu et al., 2020), as follows: _δE(ρ)_ (θ, t) = Ex _µ_ _p[⊤]ρ_ [(][t][;][ x][)][f] [(][Z][ρ][(][t][;][ x][)][, θ][)] _,_ (29) _δρ_ _∼_ where pρ(t; x) is the solution to the following ODE: _∂p∂t[⊤]ρ_ = −p[⊤]ρ R[k][ ∂][z][f] [(][Z][ρ][(][t][;][ x][)][, θ][) d][ρ][(][θ, t][)][,] (30) Z pρ(1; x) = (g(Zρ(1; x)) _y(x))_ _g(Zρ(1; x)) ._ _−_ _∇_ We now show that pρ is Lipschitz continuous with respect to ρ. **Lemma C.1 Suppose that x is in the support of µ. Suppose that ρ1, ρ2** ([0, 1]; ) and pρ1 _, pρ2_ _are the corresponding solutions of (30). Denote L1 and L2 as in (20) and ∈C_ _P_ [2] = min _r_ supp(ρ1) supp(ρ2) _θ_ _θ[1]_ _< r_ _._ _R_ _r_ _∪_ _⊂_ _Then the following two bounds are satisfied:_ _pρ1_ (t; x) _C(_ 1), (31) _|_ _| ≤_ _L_ _and_ _pρ1_ (t; x) _pρ2_ (t; x) _C(_ _,_ ) d1(ρ1, ρ2), (32) _|_ _−_ _| ≤_ _R_ _L_ _where_ = max 1, 2 _._ _L_ _{L_ _L_ _}_ **Proof From (13) in Assumption 4.1,** ZR[k][ ∂][z][f] [(][Z][ρ][1] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)] _[≤][C][(][Z][ρ][1]_ [(][t][;][ x][))] ZR[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)] (33) _C(_ 1) _≤_ _L_ R[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)][,] Z where we use (18) in the second inequality. It follows from the initial condition of (30) that _pρ1_ (1; x) _C(_ _Zρ1_ (1, x) + 1) _C(_ 1), _≤_ _|_ _|_ _≤_ _L_ where we use Assumption 4.1 in the first inequality and (18) in the second inequality. Noting that (30) is a linear equation, (31) follows naturally when we combine (33) with the inequality above. To prove (32), we define ∆(t; x) = pρ1 (t; x) _pρ2_ (t; x) . _−_ For t = 1, with x ∈ supp µ, we have ∆(1; x) = _pρ1_ (1; x) _pρ2_ (1; x) _|_ _|_ _|_ _−_ _|_ = (g(Zρ1 (1; x)) _y(x))_ _g(Zρ1_ (1; x)) (g(Zρ2 (1; x)) _y(x))_ _g(Zρ2_ (1; x)) _|_ _−_ _∇_ _−_ _−_ _∇_ _|_ (34) _C(_ ) _Zρ1_ (1; x) _Zρ2_ (1; x) _≤_ _L_ _|_ _−_ _|_ _C(_ )d1(ρ1, ρ2), _≤_ _L_ where we use Assumption 4.1, (18), and |x| < Rµ in the first inequality and (19) in the second inequality. The following ODE is satisfied by ∆: _∂∆[⊤](t; x)_ = ∆[⊤](t; x) _∂t_ _−_ _ρ2_ [(][t][;][ x][)][D][ρ]1[,ρ]2 [(][t][;][ x][)][,] (35) R[k][ ∂][z][f] [(][Z][ρ][1] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][) +][ p][⊤] where (36) R[k][ ∂][z][f] [(][Z][ρ][1] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)][ .] R[k][ ∂][z][f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][2][(][θ, t][)][ −] _Dρ1,ρ2_ (t; x) = ----- To show the boundedness ofinto two terms, we obtain _Dρ1,ρ2_ (t; x), we follow the same strategy as that for (26). By splitting _Dρ1,ρ2_ (t; x) _|_ _| ≤_ R[k][ ∂][z][f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][2][(][θ, t][)][ −] R[k][ ∂][z][f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)] Z Z (I) (37) | {z } + _._ R[k][ ∂][z][f] [(][Z][ρ][2] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)][ −] R[k][ ∂][z][f] [(][Z][ρ][1] [(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)] Z Z (II) The bound of (II) relies on part 3 of Assumption 4.1: Because the supports of| {z _ρ1, ρ2 are contained in}_ _θ_ _θ[1]_ _<_ and Z is bounded by (18), we have _R_ (II) _C(_ _,_ ) _Zρ1_ (t; x) _Zρ2_ (t; x) _C(_ _,_ )d1(ρ1, ρ2), (38) _|_ _| ≤_ _R_ _L_ _|_ _−_ _| ≤_ _R_ _L_ where we use (19) in the second inequality. To bound (I), we use the particle representation θ1 _ρ1(θ, t) and θ2_ _ρ2(θ, t) such that_ _∼_ _∼_ E _|θ1 −_ _θ2|[2][][1][/][2]_ = W2(ρ1(·, t), ρ2(·, t)). We then have (I) E ( _∂zf_ (Zρ2 (t; x), θ1) _∂zf_ (Zρ2 (t; x), θ2) ) _≤_ _|_ _−_ _|_ _≤_ _C(R, L)E (|θ1 −_ _θ2|)_ (39) _≤_ _C(R, L)_ E _|θ1 −_ _θ2|[2][][1][/][2]_ _C(_ _,_ )d1(ρ1, ρ2), _≤_ _R_ _L_ where we use the mean-value theorem, part 3 of Assumption 4.1 with _θ1,[1]_ _<_ and _θ2,[1]_ _<_, _|_ _|_ _R_ _|_ _|_ _R_ (18) in the second inequality. Substituting (38) and (39) into (37), we obtain _Dρ1,ρ2_ (t; x) _C(_ _,_ )d1(ρ1, ρ2) . _|_ _| ≤_ _R_ _L_ By substituting this bound into (35) and using (33), we have d ∆(t; x) _|_ _|[2]_ _C(_ _,_ ) ∆(t; x) + d[2]1[(][ρ][1][, ρ][2][)] _._ (40) dt _≤_ _R_ _L_ _|_ _|[2]_ The result (32) follows from the initial condition (34) and Grönwall’s inequality. The second lemma concerns the continuity of ∇θ _δEδρ(ρ)_ [.] **Lemma C.2 Suppose that ρ, ρ1, ρ2 ∈C([0, 1]; P** [2]). Define 1 = max = max _L_ 1≤i≤3 Z0 ZR[k][ |][θ][|][2][ d][ρ][i][(][θ, t][) d][t,] _L[sup]_ 1≤i≤3 _t∈[sup][0,1]_ ZR[k][ |][θ][|][2][ d][ρ][i][(][θ, t][)][,] _and_ = min _r_ supp(ρ) supp(ρ1) supp(ρ2) _θ_ _θ[1]_ _< r_ _._ _R_ _r_ _∪_ _∪_ _⊂{_ _||_ _|_ _}_ _Then for any (θ, t), (θ1, t1), (θ2, t2) ∈_ R[k] _× [0, 1] and s > 0, the following properties hold._ - Boundedness: _δE(ρ)_ _δE(ρ)_ (θ, t) (θ, t) (41) _δρ_ _δρ_ _[∇][θ]_ _[≤]_ _[C][(][L][)(][|][θ][|][ + 1)][,]_ _[∂][θ][[1]]_ _[≤]_ _[C][(][L][)(][|][θ][[1]][|][ + 1)]_ - Lipschitz continuity in θ and t: There exists Q1 : R[2] _→_ R[+] _that depends increasingly on_ _both arguments such that_ _δE(ρ)_ _δE(ρ)_ (θ1, t1) _θ_ (θ2, t2) _δρ_ _−∇_ _δρ_ (42) _≤Q[∇]1_ _[θ]_ _L, maxi=1,2[(][|][θ][i,][[1]][|][)]_ _|θ1 −_ _θ2| + Q1_ _L[sup], maxi=1,2[(][|][θ][i,][[1]][|][)]_ (|θ2| + 1)|t1 − _t2|,_ ----- - Lipschitz continuity in ρ. There exists Q : R[2] _→_ R[+] _that increasingly depends on both_ _arguments such that_ _δE(ρ1)_ _δE(ρ2)_ (θ, t) _θ_ (θ, t) (43) _δρ_ _−∇_ _δρ_ _[≤]_ _[Q][(][L][,][ |][θ][[1]][|][,][ R][)(1 +][ |][θ][|][)][d][1][(][ρ][1][, ρ][2][)][,]_ _where d1 is defined in Definition 4.1._ _[∇][θ]_ **Proof To prove the first bound of (41), we restate (29) as follows** _δE(ρ)_ _θ_ (θ, t) = Ex _µ_ _p[⊤]ρ_ [(][t][;][ x][)][∂][θ][f] [(][Z][ρ][(][t][;][ x][)][, θ][)] _∇_ _δρ_ _∼_ from which it follows that _δE(ρ)_ (θ, t) _δρ_ _[≤]_ [E][x][∼][µ][ (][|][∂][θ][f] [(][Z][ρ][(][t][;][ x][)][, θ][)][| |][p][ρ][(][t][;][ x][)][|][)][ ≤] _[C][(][L][)(][|][θ][|][ + 1)][,]_ where we use (13), (18), and (31) in the second inequality. To prove the second bound in (41), we _[∇][θ]_ use the bound of _∂θ[1]_ _f_ (x, θ) according to Assumption 4.1 part 3 to obtain _δE(ρ)_ _δρ_ (θ, t) _[≤]_ [E][x][∼][µ] _∂θ[1]_ _f_ (Zρ(t; x), θ) _|pρ(t; x)|_ _≤_ _C(L)(|θ[1]| + 1),_ To prove (42)[∂][θ][[1]], we assume t1 > t2 without loss of generality, and use the triangle inequality to obtain _δE(ρ)_ _δE(ρ)_ (θ1, t1) _θ_ (θ2, t2) _δρ_ _−∇_ _δρ_ Ex _µ_ _p[⊤]ρ_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ][(][t][1][;][ x][)][, θ][1][)][ −] _[p]ρ[⊤][(][t][1][;][ x][)][∂][θ][f]_ [(][Z][ρ][(][t][1][;][ x][)][, θ][2][)] _≤[∇][θ]_ _∼_ (I) (44) +| Ex _µ_ _p[⊤]ρ_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ][(][t][1][;][ x][)]{z[, θ][2][)][ −] _[p]ρ[⊤][(][t][1][;][ x][)][∂][θ][f]_ [(][Z][ρ][(][t][2][;][ x][)][, θ][2]}[)] _∼_ (II) + |Ex _µ_ _p[⊤]ρ_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ][(][t][2][;][ x][)][, θ]{z[2][)][ −] _[p][⊤][(][t][2][;][ x][)][∂][θ][f]_ [(][Z][ρ][(][t][2][;][ x][)][, θ][2][)] } _._ _∼_ (III) To bound (I), we use the mean-value theorem, Assumption 4.1 (14), and (18) to obtain| {z } _∂θf_ (Zρ(t1; x), θ1) _∂θf_ (Zρ(t1; x), θ2) _∂θ[2][f]_ [(][Z][ρ][(][t][1][;][ x][)][,][ (1][ −] _[λ][)][θ][1]_ [+][ λθ][2][)][||][θ][1] _|_ _−_ _| ≤|_ _[−]_ _[θ][2][|]_ _C_ _, max_ _θ1_ _θ2_ _._ _≤_ _L_ _i=1,2[(][|][θ][i,][[1]][|][)]_ _|_ _−_ _|_ For (II), we note first that _t1_ _t2_ Z _Zρ(t1; x)_ _Zρ(t2; x)_ _|_ _−_ _| ≤_ _Zρ(t1; x)_ _Zρ(t2; x)_ _|_ _−_ _| ≤_ _t2_ R[k][ f] [(][Z][ρ][(][t][;][ x][)][, θ][) d][ρ][(][θ, t][) d][t] Z Z _t1_ _≤_ _C(L)_ _t2_ R[k] _|θ|[2]_ + 1 dρ(θ, t) dt Z Z _C(_ )( + 1) _t1_ _t2_ _≤_ _L_ _L[sup]_ _|_ _−_ _|_ _C(_ ) _t1_ _t2_ _,_ _≤_ _L[sup]_ _|_ _−_ _|_ where we use Assumption 4.1 (12) together with (18) and L ≤L[sup]. This bound implies that (II) Ex _µ_ _p[⊤]ρ_ [(][t][1][;][ x][)][| |][∂][θ][f] [(][Z][ρ][(][t][1][;][ x][)][, θ][2][)][ −] _[∂][θ][f]_ [(][Z][ρ][(][t][2][;][ x][)][, θ][2][)][|] _≤_ _∼_ _|_ _≤_ _C(L)E x∼µ (|∂θf_ (Zρ(t1; x), θ2) − _∂θf_ (Zρ(t2; x), θ2)|) _C(_ _,_ _θ2,[1]_ )Ex _µ (_ _Zρ(t1; x)_ _Zρ(t2; x)_ ) _≤_ _L[sup]_ _|_ _|_ _∼_ _|_ _−_ _|_ _C(_ _,_ _θ2,[1]_ ) _t1_ _t2_ _,_ _≤_ _L[sup]_ _|_ _|_ _|_ _−_ _|_ where we use (31) in the first inequality, Assumption 4.1 (14) for f, and (18) in the second inequality. ----- To bound term (III), we again use boundedness of Zρ, pρ and the Lipschitz condition of f to obtain _t1_ _|pρ(t1; x) −_ _pρ(t2; x)| ≤_ _t2_ R[k][ p]ρ[⊤][(][t][;][ x][)][∂][z][f] [(][Z][ρ][(][t][;][ x][)][, θ][) d][ρ][(][θ, t][) d][t] Z Z _t1_ _≤_ _C(L)_ _t2_ R[k] [(][|][θ][|][2][ + 1) d][ρ][(][θ, t][) d][t] Z Z _C(_ )( + 1) _t1_ _t2_ _≤_ _L_ _L[sup]_ _|_ _−_ _|_ _C(_ ) _t1_ _t2_ _,_ _≤_ _L[sup]_ _|_ _−_ _|_ so that (III) Ex _µ (_ _∂θf_ (Zρ(t2; x), θ2) _pρ(t1; x)_ _pρ(t2; x)_ ) _C(_ )( _θ2_ + 1) _t1_ _t2_ _,_ _≤_ _∼_ _|_ _||_ _−_ _|_ _≤_ _L[sup]_ _|_ _|_ _|_ _−_ _|_ where we use Assumption 4.1 (13) in the second inequality. By substituting these bounds into (44), we complete the proof of (42). Finally, to prove (43), we recall the definition of the Fréchet derivative, to obtain _δE(ρ1)_ _δE(ρ2)_ (θ, t) _θ_ (θ, t) _δρ_ _−∇_ _δρ_ Ex _µ (_ _∂θf_ (Zρ1 (t; x), θ)pρ1 (t; x) _∂θf_ (Zρ2 (t; x), θ)pρ2 (t; x) ) _≤_ _[∇]∼[θ]_ _|_ _−_ _|_ Ex _µ (_ _∂θf_ (Zρ1 (t; x), θ) _∂θf_ (Zρ2 (t; x), θ) _pρ1_ (t; x) ) _≤_ _∼_ _|_ _−_ _| |_ _|_ + Ex _µ (_ _∂θf_ (Zρ2 (t; x), θ) _pρ1_ (t; x) _pρ2_ (t; x) ) _∼_ _|_ _| |_ _−_ _|_ _C(_ _,_ _θ[1]_ )Ex _µ (_ _Zρ1_ (t; x) _Zρ2_ (t; x) ) + C( )( _θ_ + 1)Ex _µ (_ _pρ1_ (t; x) _pρ2_ (t; x) ) _≤_ _L_ _|_ _|_ _∼_ _|_ _−_ _|_ _L_ _|_ _|_ _∼_ _|_ _−_ _|_ _C(_ _,_ _θ[1]_ _,_ )(1 + _θ_ )d1(ρ1, ρ2), _≤_ _L_ _|_ _|_ _R_ _|_ _|_ where we use Assumption 4.1 for f with (18) and (31) in the third inequality. In the last inequality, we use (19), (32). C.2 A-PRIORI ESTIMATE UNDER THE HOMOGENEOUS ASSUMPTION In Theorem 6.1 and 6.2, 2-homogeneity or partial 1-homogeneity are assumed. When these properties hold, we can sharpen the estimates obtained in the previous section. We summarize our results here. **Lemma C.3 Suppose that Assumption 4.1 holds, then there exists a constant C3(r) depending** _increasingly on r such that for any r > 0 with |x| < r and θ ∈_ R[k], we have the following. - If f is 2-homogeneous (Assumption 6.1), then _∂x[2][f]_ _≤_ _C3(r)_ _|θ|[2]_ + 1 _,_ _|∂x∂θf_ _| ≤_ _C3(r) (|θ| + 1),_ _∂θ[2][f]_ _≤_ _C3(r) ._ (45) - If f is partially 1-homogeneous (Assumption 6.2), then _∂x[2][f]_ _≤_ _C3(r)(|θ| + 1),_ _|∂x∂θf_ _| ≤_ _C3(r)(|θ| + 1),_ _∂θ[2][f]_ _≤_ _C3(r)(|θ| + 1), (46)_ _where | · | denotes the Frobenius norm._ **Proof When f satisfies Assumption 4.1 and Assumption 6.2, (46) can be obtained from direct** calculation. When f is 2-homogeneous in θ, we have _f_ (x, θ) = _θ_ _f (x, θ/_ _θ_ ) = f1(θ)f2(x, θ), _|_ _|[2]_ _|_ _|_ where f1(θ) = _θ_ _, f2(x, θ) = f (x, θ/_ _θ_ ). Naturally, with product rule, the derivatives of f _|_ _|[2]_ _|_ _|_ becomes the products of derivatives of f1 and f2. We then obtain (45), noting that when |θ| > 1, we have _∂x[2][f][1]_ = 0, _∂x∂θf1_ 0, _∂xf1_ = 0, _∂θf1_ 2 _θ_ _,_ _∂θ[2][f][1]_ 2k, _|_ _| ≤_ _|_ _|_ _|_ _| ≤_ _|_ _|_ _≤_ and _∂x[2][f][2]_ = C(r), _∂x∂θf2_ _∂xf2_ = C(r), _∂θf2_ _∂θ[2][f][2]_ _|_ _| ≤_ _[C]θ[(][r][)]_ _[,]_ _|_ _|_ _|_ _| ≤_ _[C]θ[(][r][)]_ _[,]_ _≤_ _[C]θ[(][r][)]_ _|_ _|_ _|_ _|_ _|_ _|[2][ .]_ ----- The estimates above allow us to improve the stability results in Lemmas C.1 and C.2. **Lemma C.4in (20) and** _Suppose that Assumption 4.1 holds and let ρ1, ρ2 ∈C([0, 1]; P_ [2]). Define L1 and L2 as 1 = sup _L[sup]_ _t∈[0,1]_ _Then we have the following results._ R[k][ |][θ][|][2][dρ][1][(][θ, t][)][ .] - If f either satisfies Assumption 6.1 or Assumption 6.2, we have the following properties. _1. Stability of pρ:_ _pρ1_ (t; x) _pρ2_ (t; x) _C(_ 1, 2)d1(ρ1, ρ2) . (47) _|_ _−_ _| ≤_ _L_ _L_ _2. Lipschitz continuity in ρ:_ _δE(ρ1)_ _δE(ρ2)_ (θ, t) _θ_ (θ, t) (48) _δρ_ _−∇_ _δρ_ _[≤]_ _[C][(][L][1][,][ L][2][)][d][1][(][ρ][1][, ρ][2][) (][|][θ][|][ + 1)][,]_ _where d1 is defined in (4.1)._ _[∇][θ]_ - Lipschitz continuity in θ and t: If f satisfies Assumption 6.1, then for any (θ1, t1), (θ2, t2) _∈_ R[k] _× [0, 1], we have_ _δE(ρ1)_ _δE(ρ1)_ _δρ_ (θ1, t1) −∇θ _δρ_ (θ2, t2) _[≤]_ _[C][(][L][1][)][|][θ][1][ −]_ _[θ][2][|]_ [+] _[C][(][L]1[sup])(|θ2|_ +1)|t1 − _t2| ._ (49) _[∇][θ]_ - Lipschitz continuity in θ and t: If f satisfies Assumption 6.2, then for any (θ1, t1), (θ2, t2) _∈_ R[k] _× [0, 1], we have_ _δE(ρ1)_ _δE(ρ1)_ _δρ_ (θ1, t1) −∇θ _δρ_ (θ2, t2) _[≤]_ _[C][(][L]1[sup])(|θ1|+|θ2|+1)(|θ1_ _−θ2|+|t1_ _−t2|),_ (50) _[∇][θ]_ **Remark C.1 We note that in comparing (32) with (47) and (42)-(43) with (48)-(50), the main** _differences are the dependence of the bounds on θ. The new estimates have explicit (and mild)_ _dependence on θ._ **Proof First, to prove (47), we let ∆(t; x) = pρ1** (t; x) _pρ2_ (t; x), and recall (35) and (36). Using _−_ the boundedness of Zρ in (18) and (19), and calling (45) (or (46)), we have from (36) that _Dρ1,ρ2_ (t; x) _C(_ 1, 2) _d1(ρ1, ρ2) ._ _|_ _| ≤_ _L_ _L_ ZR[k][ |][θ][|][2][dρ][1][(][θ, t][) +] ZR[k][ |][θ][|][2][dρ][2][(][θ, t][) + 1] By substituting into (35), and using (31), (33), and Hölder’s inequality, we have d ∆(t; x) _|_ _|[2]_ _C(_ 1, 2) ∆(t; x) dt _≤_ _L_ _L_ _|_ _|[2]_ ZR[k][ |][θ][|][2][dρ][1][(][θ, t][) +] ZR[k][ |][θ][|][2][dρ][2][(][θ, t][) + 1] + C(L1, L2) _d[2]1[(][ρ][1][, ρ][2][)][ .]_ ZR[k][ |][θ][|][2][dρ][1][(][θ, t][) +] ZR[k][ |][θ][|][2][dρ][2][(][θ, t][) + 1] The result (47) follows from the initial condition (34) together with Grönwall’s inequality. Next, to prove (48), we have _δE(ρ1)_ _δE(ρ2)_ (θ, t) _θ_ (θ, t) _δρ_ _−∇_ _δρ_ Ex _µ (_ _∂θf_ (Zρ1 (t; x), θ)pρ1 (t; x) _∂θf_ (Zρ2 (t; x), θ)pρ2 (t; x) ) _≤_ _[∇]∼[θ]_ _|_ _−_ _|_ Ex _µ (_ _∂θf_ (Zρ1 (t; x), θ) _∂θf_ (Zρ2 (t; x), θ) _pρ1_ (t; x) ) _≤_ _∼_ _|_ _−_ _| |_ _|_ + Ex _µ (_ _∂θf_ (Zρ2 (t; x), θ) _pρ1_ (t; x) _pρ2_ (t; x) ) _∼_ _|_ _| |_ _−_ _|_ _C(_ 1, 2)( _θ_ + 1) (Ex _µ (_ _Zρ1_ (t; x) _Zρ2_ (t; x) ) + Ex _µ (_ _pρ1_ (t; x) _pρ2_ (t; x) )) _≤_ _L_ _L_ _|_ _|_ _∼_ _|_ _−_ _|_ _∼_ _|_ _−_ _|_ _C(_ 1, 2)d1(ρ1, ρ2) ( _θ_ + 1), _≤_ _L_ _L_ _|_ _|_ ----- where we also use (13), (18), (31), (45) (or (46)) in the second inequality and (19) and (47) in the final inequality. Finally, to prove (49) and (50), we have as in (44) that _δE(ρ1)_ _δE(ρ1)_ (θ1, t1) _θ_ (θ2, t2) _δρ_ _−∇_ _δρ_ _≤_ E[∇]x[θ]∼µ _p[⊤]ρ1_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ]1 [(][t][1][;][ x][)][, θ][1][)][ −] _[p][⊤]ρ1_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ]1 [(][t][1][;][ x][)][, θ][2][)] (I) |+ Ex∼µ _p[⊤]ρ1_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ]1 [(][t][1][;][ x][)]{z[, θ][2][)][ −] _[p][⊤]ρ1_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ]1 [(][t][2][;][ x][)][, θ][2]}[)] (II) + |Ex∼µ _p[⊤]ρ1_ [(][t][1][;][ x][)][∂][θ][f] [(][Z][ρ]1 [(][t][2][;][ x][)][, θ]{z[2][)][ −] _[p][⊤]ρ1_ [(][t][2][;][ x][)][∂][θ][f] [(][Z][ρ]1 [(][t][2][;][ x][)][, θ][2][)] (III) The boundedness of the three terms above relies on Assumption 4.1 and (45) (or (46)).| {z To bound (I), if f is 2-homogeneous, we have (51) (I) _C(_ 1) _θ1_ _θ2_ _,_ _|_ _| ≤_ _L_ _|_ _−_ _|_ where we use (18), (31), and ∂θ[2][f][ ≤] _[C][(][|][z][|][)][. If][ f][ satisfies Assumption 6.2, we have]_ (I) _C(_ 1)( _θ1_ + _θ2_ + 1) _θ1_ _θ2_ _,_ _|_ _| ≤_ _L_ _|_ _|_ _|_ _|_ _|_ _−_ _|_ where we use (18), (31), and ∂θ[2][f] [(][z, θ][)][ ≤] _[C][(][|][z][|][)(][|][θ][|][ + 1)][.]_ The bounds of (II) and (III) are same for both homogeneity assumptions and similar to the proof of Lemma C.2. For (II), we have _∂θf_ (Zρ1 (t1; x), θ2) _∂θf_ (Zρ1 (t2; x), θ2) _C(_ 1)( _θ2_ + 1) _Zρ1_ (t1; x) _Zρ1_ (t2; x) _|_ _−_ _| ≤_ _L_ _|_ _|_ _|_ _−_ _|_ and _Zρ1_ (t1; x) _Zρ1_ (t2; x) _C(_ 1)( 1 + 1) _t1_ _t2_ _._ _|_ _−_ _| ≤_ _L_ _L[sup]_ _|_ _−_ _|_ For (III), we also use _∂θf_ (Zρ1 (t2; x), θ2) _C(_ 1)( _θ2_ + 1) _|_ _| ≤_ _L_ _|_ _|_ and _pρ1_ (t1; x) _pρ1_ (t2; x) _C(_ 1)( 1 + 1) _t1_ _t2_ _._ _|_ _−_ _| ≤_ _L_ _L[sup]_ _|_ _−_ _|_ These estimates, together with 1 1 and (51), prove the claims (49) and (50). _L_ _≤L[sup]_ D WELL POSEDNESS OF GRADIENT FLOW Theorem A.4 is about well-posedness of the gradient flow equation (9) in the mean-field limit, while Theorem A.3 shows the corresponding result in the discrete setting. The proof for the two are similar. We first show the mean-field limit well-posedness, Theorem A.4. D.1 PROOF OF THEOREM A.4 We use the fixed-point argument. To do so, we first define a subset of C([0, S]; C([0, 1]; P [2])) with compact support measures, as follows: ΩS = _φ(θ, t, s) ∈C([0, S]; C([0, 1]; P_ [2])) _∃r > 0, supp(φ) ⊂{θ||θ[1]| < r}, ∀(t, s) ∈_ [0, 1] × [0, S] _φ(θ, t, s)_ ([0, S]; ([0, 1]; )) _φ(θ, t, 0) = ρini(θ, t)_ _∩_ _∈C_ _C_ _P_ [2] For any φ(θ, t, s) ∈ ΩS with φ(θ, t, 0) = ρini(θ, t), we define a map _ϕ =_ _S(φ) : ΩS_ ΩS (52) _T_ _→_ ----- where ϕ solves _∂ϕ(θ, t, s)_ _δE(φ(s))_ = _θ_ _ϕ(θ, t, s)_ _θ_ (θ, t) _,_ _∂s_ _∇_ _·_ _∇_ _δρ_ (53) ϕ(θ, t, 0) = ρini(θ, t) . The strategy is to show this map is a contraction map, so that there is a fixed point in the set ΩS, which is then the solution to equation (9). The proof of Theorem A.4 is divided into three steps: Step 1: We show TS is well-defined map from ΩS to ΩS. Step 2: We give a bound of d2(TS(φ1), TS(φ2)) in terms of d2(φ1, φ2). One can then tune S to ensure TS is a contraction map, meaning there is a unique fixed point φ[∗] so that φ[∗] = TS(φ[∗]), and thus φ[∗] solves (53) for s < S. Step 3: We extend the local solution to a global solution. **Step 1.** According to the definition of (53), for a fixed φ(θ, t, s), let dθφd(ss;t) = −∇θ _δE(δρφ(s))_ (θφ(s; t), t), (54) (θφ(0; t) _ρini(θ, t) ._ _∼_ Then θφ _ϕ =_ _S(φ). To show the existence of ϕ amounts to showing the wellposedness of (54)._ _∼_ _T_ According to Lemma C.2 (41) and (42), the force ∇θ _δφδE(s)_ [(][·][, t][)][ has a linear growth and is locally] Lipschitz. Classical ODE theory then suggests there is a unique solution for s ∈ [0, S], which depends continuously on the initial value θ(0; t). Denoting 1 _LS,φ =_ 0≤sups≤S Z0 ZR[k][ |][θ][|][2][ d][φ][(][θ, t, s][) d][t,] _Lini[sup]_ [= sup]0≤t≤1 ZR[k][ |][θ][|][2][ d][ρ][ini][(][θ, t][)][,] _LS,φ[sup]_ [=] 0≤t≤sup1,0≤s≤S ZR[k][ |][θ][|][2][ d][φ][(][θ, t, s][)] ini = inf supp(ρini(θ, t)) _θ_ _θ[1]_ _< r_ _,_ _t_ [0, 1] _R_ _r>0_ _⊂{_ _||_ _|_ _}_ _∀_ _∈_ (55) _S,φ = inf_ supp(φ(θ, t, s)) _θ_ _θ[1]_ _< r_ _,_ (t, s) [0, 1] [0, S] _,_ _R_ _r>0_ _⊂{_ _||_ _|_ _}_ _∀_ _∈_ _×_ we have the following proposition. **Proposition D.1 Suppose that θφ(s; t) solves (54) and φ ∈** ΩS. Then for any (t1, s1), (t2, s2) ∈ [0, 1] × [0, S], we have E _|θφ(s1; t1)|[2][]_ _≤_ exp(SC(LS,φ)) (Lini[sup] [+ 1)][,][ |][θ][φ,][[1]][(][s][1][;][ t][1][)][|] _≤_ exp(SC(LS,φ)) (Rini + 1) (56) _and_ E _|θφ(s1; t1) −_ _θφ(s2; t2)|[2][]_ (57) _≤_ _C_ _LS,φ[sup][,][ R][ini][, S]_ E _|θφ(0; t1) −_ _θφ(0; t2)|[2][]_ + |t1 − _t2|[2]_ + |s1 − _s2|[2][]_ _._ **Proof To prove the first bound in (56), we multiply (54) on both sides by θφ and use boundedness of** the forcing term (41) to obtain d _θφ(s; t1)_ _|_ _|[2]_ _C(_ _S,φ)(_ _θφ(s; t1)_ + 1) . ds _≤_ _L_ _|_ _|[2]_ ----- Using Grönwall’s inquality together with E _|θφ(0; t1)|[2][]_ _≤Lini[sup][, we obtain the first bound in][ (56)][.]_ To prove the second bound in (56), we use the bound of _∂θ[1]_ _δEδρ(ρ)_ [(][θ, t][)] according to Lemma C.2 (41): d _θφ,[1](s; t1)_ ds _≤_ _C(LS,φ)(_ _θφ,[1](s; t1)_ + 1) . Using Grönwall’s inquality together with[2] _θφ,[1](0; t1)_ ini, we obtain the second bound in (56). _|_ _| ≤R_ [2] To show (57), we first write E |θφ(s1; t1) − _θφ(s2; t2)|[2][]_ _≤_ 2 E |θφ(s1; t1) − _θφ(s1; t2)|[2][]_ +2 E |θφ(s1; t2) − _θφ(s2; t2)|[2][]_ _,_ (58) (I) (II) then bound the two terms| (I) and (II){z separately. For} (I)|, we use (54){z, the second bound of} (56), and Lemma C.2 (42) d _θφ(s; t1)_ _θφ(s; t2)_ _|_ _−_ _|[2]_ ds _C(_ _S,φ,_ ini) _θφ(s; t1)_ _θφ(s; t2)_ + C( _S,φ[,][ R][ini][)(][|][θ][φ][(][s][1][;][ t][1][)][|][2][ +][ |][θ][φ][(][s][1][;][ t][2][)][|][2][ + 1)][|][t][1][ −]_ _[t][2][|][2][,]_ _≤_ _L_ _R_ _|_ _−_ _|[2]_ _L[sup]_ Using the first bound in (56) and Grönwall’s inequality, this implies that E _|θφ(s1; t1) −_ _θφ(s1; t2)|[2][]_ _≤_ _C_ _LS,φ[sup][,][ R][ini][, S]_ E _|θφ(0; t1) −_ _θφ(0; t2)|[2][]_ + |t1 − _t2|[2][]_ _._ (59) For (II), we obtain an estimate by integrating (54) from s1 to s2 and using the boundedness of _θ_ _δEδρ(ρ)_ in (41). From the Grönwall inequality, we have _∇_ _s2_ _θφ(s1; t2)_ _θφ(s2; t2)_ _C (_ _S,φ)_ _θφ(s; t2)_ ds + _s1_ _s2_ _._ _|_ _−_ _| ≤_ _L_ _s1_ _|_ _|_ _|_ _−_ _|_ Z Using first bound in (56) and Hölder’s inequality, this implies E |θφ(s1; t2) − _θφ(s2; t2)|[2]_ _≤_ _C (LS,φ, Lini[sup][, S][)][ |][s][1][ −]_ _[s][2][|][2]_ (60) and thus combining with (59) and substituting in (58), we complete the proof. An immediate corollary of Proposition D.1 is that the map _S(_ ) is well defined. _T_ _·_ **Corollary D.1 For every fixed S > 0, the map TS is well defined. That is, for any φ ∈** ΩS, one can _find ϕ = TS(φ) ∈_ ΩS as the unique solution of (53). In particular, for any (t, s) ∈ [0, 1] × [0, S], _we have_ ini [+ 1)][,] R[k][ |][θ][|][2][ d][ϕ][(][θ, t, s][)][ ≤] [exp(][SQ][1][(][L][S,φ][)) (][L][sup] (61) Z suppθ(ϕ(θ, t, s)) _θ_ _θ[1]_ exp(SQ1( _S,φ)) (_ ini + 1) _,_ _⊂_ _|_ _| ≤_ _L_ _R_ _where Q1 : R+_ R+ is depends only on _S,φ and is an increasing function of its argument._ _→_ _L_ **Proof For fixed (t, s) ∈** [0, 1] _×_ [0, S], define ϕ(θ, t, s) as the distribution of θφ(s; t). Using classical stochastic theory (Ambrosio et al., 2008, Prop 8.1.8), ϕ(θ, t, s) is a solution to (53). The estimate of the support is a consequence of (56). Finally, using (16) and (57), we obtain that lim E _θφ(s; t)_ _θφ(s0; t0)_ = 0, (t,s) (t0,s0) _[W][2][(][ϕ][(][·][, t, s][)][, ϕ][(][·][, t][0][, s][0][))][ ≤]_ ([lim]t,s) _|_ _−_ _|[2][][1][/][2]_ _→_ which proves the continuity in s and t, so that ϕ ∈C([0, S]; C([0, 1]; P [2])). By combining all the factors above, we conclude that ϕ ΩS. _∈_ ----- **Step 2.** We show now that TS is a contraction map for S sufficiently small. **Proposition D.2 For any φ1, φ2 ∈** ΩS, we have _d2(_ _S(φ1),_ _S(φ2))_ _SQ2(_ _S,_ _S, S)d2(φ1, φ2),_ (62) _T_ _T_ _≤_ _L_ _R_ _where Q2 : R[3]_ _→_ R+ is an increasing function and LS = max{LS,φ1, LS,φ2 _}, RS =_ max{RS,φ1, RS,φ2 _}, with LS,φ, RS,φ defined in (55)._ **Proof Denote by θφi** (s; t) the solutions to (54) with φ = φi using the same initial data, that is, _θφ1_ (0; t) = θφ2 (0; t) . As in the previous subsection, we translate the study of ϕi to the study of θφi . Defining ∆t(s) = _θφ1_ (s; t) _θφ2_ (s; t) _,_ _|_ _−_ _|_ we have according to the definition of Wasserstein distance that _d2(TS(φ1), TS(φ2)) ≤_ (t,s)∈[0sup,1]×[0,S] E ∆[2]t [(][s][)] _._ Using (54), we obtain 2 d(∆t(s))[2] _δE(φ1(s))_ _δE(φ2(s))_ ds _≤_ 4(∆t(s))[2] + 4 _δρ_ (θφ1 _, t) −∇θ_ _δρ_ (θφ2 _, t)_ 2 _≤_ 4(∆t(s))[2] + 8 _[∇][θ]_ _δE(φδρ1(s))_ (θφ1 _, t) −∇θ_ _δE(φδρ1(s))_ (θφ2 _, t)_ (63) 2 _δE(φ1(s))_ _δE(φ2(s))_ + 8 _δρ_ _[∇](θ[θ]φ2_ _, t) −∇θ_ _δρ_ (θφ2 _, t)_ _._ The second term on the right hand side involves the continuity addressed in Lemma C.2 (42) _[∇][θ]_ 2 _δE(φ1(s))_ _δE(φ1(s))_ _δρ_ (θφ1 _, t) −∇θ_ _δρ_ (θφ2 _, t)_ _≤_ _C(LS, RS, S)(∆t(s))[2]_ _,_ where we use the second bound in (56) to substitute the constant in (42). Then the last term of (63) _[∇][θ]_ involves the continuity discussed in (43). In particular, we have _δE(φ1(s))_ _δE(φ2(s))_ _δρ_ (θφ2 _, t) −∇θ_ _δρ_ (θφ2 _, t)_ _C(_ _S,_ _θφ2,[1]_ )(1 + _θφ2_ )d1(φ1, φ2) _C(_ _S,_ _S, S)(1 +_ _θφ2_ )d2(φ1, φ2), _≤_ _[∇]R[θ]_ _|_ _|_ _|_ _|_ _≤_ _L_ _R_ _|_ _|_ where d2 is defined in Definition 4.1 and in the second inequality we use the second bound in (56) to substitute the constant in (43). By substituting in (63), we obtain d(∆t(s))[2] _C(_ _S,_ _S, S)_ (∆t(s))[2] + (1 + _θφ2_ )d[2]2[(][φ][1][, φ][2][)] ds _≤_ _L_ _R_ _|_ _|[2]_ which implies d E(∆t(s))[2][] _C(_ _S,_ _S, S)_ E(∆t(s))[2][] + d[2]2[(][φ][1][, φ][2][)] _,_ ds _≤_ _L_ _R_ where we use the first inequality in (56). From the Grönwall inequality, there exists Q2 : R[3] _→_ R+ is an increasing function such that E (∆t(s))[2][] _≤_ _SQ2(LS, RS, S)d[2]2[(][φ][1][, φ][2][)][,]_ completing the proof. To apply the contraction mapping theorem, we need to verify two conditions in order to show that there exists a fixed point φ[∗] = _S(φ[∗]):_ _T_ ----- - There is a closed subset in ΩS such that TS maps this set to itself. - TS is a contraction map in this subset. For the closed subset, we define _Bρ0 =_ _φ ∈_ ΩS supp(φ(t, s)) ⊂{θ||θ[1]| ≤ 4(Rini + 1)}, _∀(t, s) ∈_ [0, 1] × [0, S] (64) _∩_ _φ ∈_ ΩS ini [+ 1)][,] _∀(t, s) ∈_ [0, 1] × [0, S] _._ ZR[k][ |][θ][|][2][ d][φ][(][θ, t, s][)][ ≤] [4 (][L][sup] We now claim that for small enough S, TS is a contraction map in Bρ0 . **Proposition D.3 Suppose that S is small enough that** exp(SQ1(4(Lini[sup] [+ 1))) (][L]ini[sup] [+ 1)][ ≤] [4(][L]ini[sup] [+ 1][,] exp(SQ1(4(Lini[sup] [+ 1))) (][R][ini][ + 1)][ ≤] [4(][R][ini][ + 1)][,] _SQ2(4(_ ini [+ 1)][,][ 4(][R][ini][ + 1)][, S][)][ <][ 1] _L[sup]_ 2 _[,]_ _where Q1 and Q2 are defined in Corollary D.1 and Proposition D.2, respectively. Then we have the_ _following._ - If φ _Bρ0_ _, then_ _S(φ)_ _Bρ0_ _, that is, for any (t, s)_ [0, 1] [0, S], we have _∈_ _T_ _∈_ _∈_ _×_ supp(TS(φ)(t, s)) ⊂{θ||θ[1]| ≤ 4(Rini + 1)}, (65) _and_ ini [+ 1)][ .] (66) R[k][ |][θ][|][2][ d][T][S][(][φ][)(][θ, t, s][)][ ≤] [4 (][L][sup] Z - TS is a contraction map in this subset, meaning that for any φ1, φ2 ∈ _Bρ0_ _, we have_ _d2(_ _S(φ1),_ _S(φ2)) <_ [1] (67) _T_ _T_ 2 _[d][2][(][φ][1][, φ][2][)][ .]_ using (62) with (65) and (66), we haveProof First, using Corollary D.1 (61) and noticing LS,φ ≤ 4 (Lini[sup] [+ 1)][, we prove][ (65)][,][ (66)][. Then,] _d2(_ _S(φ1),_ _S(φ2))_ _SQ2(4(_ ini [+ 1)][,][ 4(][R][ini][ + 1)][, S][)][ <][ 1] _T_ _T_ _≤_ _L[sup]_ 2 _[d][2][(][φ][1][, φ][2][)][,]_ which proves (67). Using the contraction mapping theorem, we can obtain directly that _S(φ) has a fixed point in Bρ0_ _T_ when S is small enough. **Corollary D.2 If S satisfies conditions in Proposition D.3, then there exists a unique φ[∗](θ, t, s) ∈** _Bρ0 ⊂_ ΩS such that φ[∗](θ, t, s) is a solution to (9) with initial condition ρini(θ, t). This is a direct consequence of the application of contraction mapping theorem. Finally, we prove that the cost function decreases along the flow. **Lemma D.1 Suppose that φ[∗](θ, t, s) ∈C([0, S]; C([0, 1]; P** [2])) solves (9) with initial condition _ρini(θ, t). Then for 0 < s < S, we have_ 1 2 dE(φ[∗](θ, t, s)) _δE(φ[∗](s))_ = (θ, t) dφ[∗](θ, t, s) dt 0 . (68) ds _−_ 0 R[k] _δρ_ _≤_ Z Z **Proof Denote by θ[∗](s; t) the associated path, meaning that θ[∗](s; t) solves (54) with φ = φ[∗], then** _[∇][θ]_ _θ[∗]_ _∼_ _φ[∗], meaning the distribution of θ[∗]_ is φ[∗]. According to (9), we obtain using a change of variable that 1 2 dE(φ[∗](θ, t, s)) _δE(φ[∗](s))_ = (θ, t) dφ[∗](θ, t, s) dt 0, (69) ds _−_ 0 R[k] _δρ_ _≤_ Z Z which proves the result. We note that the derivation in (69) is formal. A rigorous proof can be found in (Ding et al., 2021, Appendix I). _[∇][θ]_ ----- **Step 3.** In this final step of the proof, we extend the local solution from Corollary D.2 to a global solution. Lemma D.1 shows that the formula of [d]d[E]s [, so we can then use this formula to improve] the bound for the support of the solution (61). This improvement will be shown in the following corollary. This improved estimate helps in extending the local solution to the global solution. **Corollary D.3 For fixed S satisfying the condition in Proposition D.3, denote by φ[∗](θ, t, s) ∈** ([0, S]; ([0, 1]; )) the solution to (9) with initial condition ρini(θ, t). Then for any (t, s) _C_ _C_ _P_ [2] _∈_ [0, 1] × [0, S], we have ini [)][,] R[k][ |][θ][|][2][ d][φ][∗][(][θ, t, s][)][ ≤] _[C][(][S,][ R][ini][,][ L][sup]_ (70) Z supp(φ[∗](t, s)) ⊂ _θ_ _|θ[1]| ≤_ _C(S, Rini, Lini[sup][)][}][,]_ _where the quantity C depends only on S, Rini, and Lini[sup][)][.]_ **Proof According to (61), it suffices to prove** 1 _LS,φ∗_ = 0≤sups≤S Z0 ZR[k][ |][θ][|][2][ d][φ][∗][(][θ, t, s][) d][t][ ≤] _[C][(][S,][ R][ini][,][ L]ini[sup][)][ .]_ Denote by θ[∗](s; t) the particle representation of φ[∗], meaning that θ[∗](s; t) solves (54) with φ = φ[∗]. Since θ[∗](s; t) ∼ _φ[∗](s; t),_ 1 1 _S,φ∗_ = sup sup E _θ[∗](s; t)_ dt . _L_ 0≤s≤S Z0 ZR[k][ |][θ][|][2][ d][φ][∗][(][θ, t, s][) d][t][ =] 0≤s≤S Z0 _|_ _|[2][]_ Using (54), we obtain that d _θ[∗](s; t)_ _δE(φ[∗](s))_ _|_ _|[2]_ _θ[∗](s; t)_ (θ[∗](s; t), t) _[,]_ ds _≤|_ _|_ _δρ_ which gives _[∇][θ]_ 1 d 0 [E] _|θ[∗](s; t)|[2][]_ _dt_ ds R 1 1/2 1 2[!] _δE(φ[∗](s))_ E _θ[∗](s; t)_ _dt_ E (θ[∗](s; t), t) _dt_ _≤_ Z0 _|_ _|[2][]_ Z0 _δρ_ ! 1 1/2 dE(φ[∗](θ, t, s[∇][θ] )) = E _θ[∗](s; t)_ _dt_ _[,]_ 0 _|_ _|[2][]_ ds Z where we use the Hölder inequality and (68) from Lemma D.1 in the last equality. Since 1 0 E _|θ[∗](0; t)|[2][]_ _dt ≤Lini[sup][,]_ Z _S_ dE(φ[∗](θ, t, s)) [d][s][ ≤] _[E][(][ρ][ini][(][θ, t][))][ −]_ _[E][(][φ][∗][(][θ, t, S][))][ ≤]_ _[C][(][L]ini[sup][)][,]_ 0 ds Z we obtain 1 _LS,φ∗_ = sup0≤u≤s Z0 E _|θ[∗](u; t)|[2][]_ _dt ≤_ _C(S, Lini[sup][)]_ by Grönwall’s inequality. This proves (70). By contrast with (61), this estimate removes the dependence of the bound on _S,φ. This improvement_ _L_ is important because it relaxes the fixed-point argument from the dependence on the initial guess φ. We are now ready to prove Theorem A.4. **Proof [Proof of Theorem A.4] From Corollary D.2, let S1 be a constant satisfying the conditions in** Proposition D.3. Then there is a local solution φ[∗] _C([0, S1];_ ([0, 1]; )) to (9). _∈_ _C_ _P_ [2] ----- We now denote by S[∗] the largest time within which the solution exists, where we denote this solution by φ[∗] _∈_ _C_ [0, S[∗]); C([0, 1]; P [2]) . We aim to show that S[∗] = ∞. According to Corollary D.3 (70), for any s < S[∗] and t [0, 1], we have _∈_ ini [)][,] R[k][ |][θ][|][2][ d][φ][∗][(][θ, t, s][)][ ≤] _[C][(][S][∗][,][ R][ini][,][ L][sup]_ Z supp(φ[∗](t, s)) ⊂ _θ_ _|θ[1]| ≤_ _C(S[∗], Rini, Lini[sup][)]_ _,_ Define R[∗] = RS[∗],φ[∗], L[∗] = LS[sup][∗],φ[∗] [according to] [ (55)][. Since][ R][∗][,][ L][∗] _[<][ ∞][, let us choose][ ∆][S][∗]_ [small] enough to satisfy exp(∆S∗ _Q1(4(_ +1))) ( + 1) 4( +1), exp(∆S∗ _Q1(4(_ +1))) ( + 1) 4( +1), _L[∗]_ _L[∗]_ _≤_ _L[∗]_ _L[∗]_ _R[∗]_ _≤_ _R[∗]_ and ∆S∗ _Q2(4(_ + 1), 4( + 1), ∆S∗ ) _L[∗]_ _R[∗]_ _≤_ [1]2 _[,]_ If S[∗] is finite, then, using Proposition D.3 and Corollary D.2, we can further extend φ[∗] to be supported on C [0, S[∗] + ∆S∗ ); ([0, 1]; ), giving a contradiction. If follows that S[∗] =, as desired. _C_ _P_ [2] _∞_ Finally, (21) is a direct result of Lemma D.1. D.2 PROOF OF THEOREM A.3 This section is dedicated to Theorem A.3 — we show the well posedness of the gradient flow in the finite-layer case. We rewrite the gradient of (2) as follows _∂E(ΘL,M_ ) _∂θl,m_ where pΘL,M (l; x) solves: 1 _∂θf_ (ZΘL,M (l; x), θl,m)pΘL,M (l; x) _,_ (71) _ML_ [E][x][∼][µ] _p[⊤]ΘL,M_ [(][l][;][ x][) =][ p]Θ[⊤]L,M [(][l][ + 1;][ x][)] _I +_ _∂zf_ _ZΘL,M (l + 1; x), θl+1,i_ _m=1_ X (72) _ML_ _pΘL,M (L −_ 1; x) = _g(ZΘL,M (L; x)) −_ _y(x)_ _∇g(ZΘL,M (L; x)),_ for 0 ≤ _l ≤_ _L −_ 2. We unify the space in a similar fashion to Definition 4.1. **Definition D.1 ΘL,M = {θl,m}l[L]=0[−][1],m[,M]=1** _[∈]_ _[L]L,M[∞]_ _[if and only if]_ sup _θl,m_ _<_ _._ _l,m_ _|_ _|_ _∞_ _The metric in L[∞]L,M_ _[is defined as]_ 1/2 _M_ 1 _d1,L,M_ ΘL,M _,_ ΘL,M = max _θl,m_ _θl,m_ _._ _l_ _M_ _m=1_ _|_ _−_ [e] _|[2]!_ X [e] **Definition D.2 For s** 0, we have ΘL,M (s) = _θl,m(s)_ _l=0,m=1_ _L,M_ [)][ if and only if] _≥_ _{_ _}[L][−][1][,M]_ _[∈C][([0][,][ ∞][);][ L][∞]_ _1. For fixed s ∈_ [0, ∞), ΘL,M (s) ∈ _L[∞]L,M_ _[.]_ _2. For any s0_ [0, ), _∈_ _∞_ lim _s_ _s0_ _[d][1][,L,M][ (Θ][L,M]_ [(][s][)][,][ Θ][L,M] [(][s][0][)) = 0][,] _→_ _where d1,L,M is defined in Definition D.1._ _The metric in C([0, ∞); L[∞]L,M_ [)][ is defined by] _d2,L,M_ ΘL,M _,_ ΘL,M = sup ΘL,M (s)) . _s_ _[d][1][,L,M]_ [(Θ][L,M] [(][s][)][,][ e] [e] ----- Theorem A.3 is to say that the solution to (3) is unique in C([0, ∞); L[∞]L,M [)][ if][ Θ][L,M] [(0)][ ∈] _[L][∞]L,M_ [.] Before proving the theorem, prepare some a-priori estimates of ZΘL,M and pΘL,M . **Lemma D.2 Suppose that Assumption 4.1 holds and that x is in the support of µ. Let** _L−1,M_ ΘL,M = {θl,m}[L]l=0[−][1],m[,M]=1 _[,]_ _and_ ΘL,M = _θl,m_ _l=0,m=1_ _[,]_ n o e e _and denote_ _L−1_ _l=0_ X _L−1_ _l=0_ X _θl,m_ _,_ _|_ _|[2]_ _m=1_ X _LΘL,M =_ _LM_ 1 _LM_ _θl,m_ _,_ _|[e]_ _|[2]_ _l=0_ _m=1_ X X _θl,m_ _,_ _θl,m_ _._ _|_ _|_ o [e] _LΘL,M_ [=] _LM_ e _RL,M = supl,m_ _Then for 0 ≤_ _l ≤_ _L −_ 1, we have the following properties: - Boundedness in ZΘL,M : _ZΘL,M (l + 1; x)_ _≤_ _C(LΘL,M ),_ (73) - Lipschitz in ZΘL,M : _ZΘL,M (l + 1; x) −_ _ZΘL,M_ [(][l][ + 1;][ x][)] _≤_ _C_ _LΘL,M, LΘL,M_ _d1,L,M_ ΘL,M _,_ ΘL,M _,_ (74) e e [e] - Boundedness in pΘL,M : _pΘL,M (l; x)_ _≤_ _C(LΘL,M ),_ (75) - Lipschitz in pΘL,M : _pΘL,M (l; x) −_ _pΘL,M_ [(][l][;][ x][)] _≤_ _C (RL,M_ ) d1,L,M ΘL,M _,_ ΘL,M _._ (76) e **Proof From (1) and (12) we obtain** [e] ( _θl,m_ + 1) _|_ _|[2]_ _m=1_ X _M_ ( _θl,m_ + 1) _|_ _|[2]_ _m=1_ X _ZΘL,M (l + 1; x)_ + 1 _≤_ _C1_ 1 + _≤_ _C1 exp_ which proves (73) by iteration on l. From (13) and (73) we obtain _ZΘL,M (l; x)_ + 1) _ZΘL,M (l; x)_ + 1), _LM_ 1 _LM_ _M_ _M_ 1 _∂zf_ _ZΘL,M (l + 1; x), θl,m_ ( _θl,m_ + 1), _ML_ _|_ _| ≤_ _[C][(][L]ML[Θ][L,M][ )]_ _|_ _|[2]_ _m=1_ _m=1_ X X which by (72) implies _M_ _pΘL,M (l; x)_ 1 + _[C][(][L][Θ][L,M][ )]_ ( _θl,m_ + 1) _pΘL,M (l + 1; x)_ _._ _|_ _| ≤_ _ML_ _m=1_ _|_ _|[2]_ ! _|_ _|_ X From this bound, together with |pΘL,M (x, L − 1)| ≤ _C|ZΘL,M (L; x)| ≤_ _C(LΘL,M ), we prove (75)_ by iteration on l. ----- To prove (74), we subtract the two updating formulas and split the estimate to obtain _ZΘL,M (l + 1; x) −_ _ZΘL,M_ [(][l][ + 1;][ x][)] _M_ e _≤_ 1 + _[C][(][L]ML[Θ][L,M][ )]_ (|θl,m|[2] + 1) _ZΘL,M (l; x) −_ _ZΘL,M_ [(][l][;][ x][)] _m=1_ + _C(LΘL,M, LΘL,MX[)]_ 1 _M_ ( _θl,m!_ + _θl,m_ + 1) e _d1,L,M_ ΘL,M _,_ ΘL,M _,_ _L_ e _M_ _m=1_ _|_ _|[2]_ _|[e]_ _|[2]_ ! X where we use (1) together with the bounds (13), and (73). Noting that |ZΘL,M (0; x)−Z[e]ΘL,M [(0;][ x][)][|][ =] 0, we prove (74) by iteration on l. e Finally, for (76), we subtract two equations in the form of (72), and use (72)-(75) together with Lipschitz continuity to obtain _pΘL,M (l; x) −_ _pΘL,M_ [(][l][;][ x][)] _M_ e 1 _≤_ ΘL,M [(][l][ + 1;][ x][))][⊤] _I +_ _ML_ _m=1_ _∂zf_ _ZΘL,M (l + 1; x), θl+1,m_ ! _M_ X 1 + [(][p]Θ[Θ]L,M[L,M][(][ (][l][ + 1;][l][ + 1;][ x][ x][)] [)][ −]ML[p] [e] _∂zf_ _ZΘL,M (l + 1; x), θl+1,i_ _−_ _∂zf_ _ZΘL,M_ [(][l][ + 1;][ x][)][,][ e]θl+1,m _m=1_ e _M_ X e [!] _≤_ _[p][⊤]1 +_ _[C][(]ML[R][L,M]_ [)] (|θl,m|[2] + 1) _pΘL,M (l + 1; x) −_ _pΘL,M_ [(][l][ + 1;][ x][)] _m=1_ X ! e + _[C][(][R][L,M]_ [)] _d1,L,M_ ΘL,M _,_ ΘL,M _._ _L_ (77) The initial data is also controlled, as follows:[e] _|pΘL,M (L −_ 1; x) − _pΘL,M_ [(][L][ −] [1;][ x][)][| ≤] _[C][|][Z][Θ][L,M]_ [(][L][;][ x][)][ −] _[Z]Θ[e]_ _L,M_ [(][L][;][ x][)][|] e _C(_ _L,M_ )d1,L,M ΘL,M _,_ ΘL,M _._ _≤_ _R_ By combining this with (77), we prove (76) by iteration on l. [e] Lemma D.2 resembles Theorem A.2 and Lemma C.1. These estimates allow us to prove Theorem A.3. Since the proof strategy is exactly the same, we omit details. Essentially we define a map Θ(s) = _S[L,M]_ (Θ[′](s)) : ([0, ); L[∞]L,M [)][ →] _[,][ C][([0][,][ ∞][);][ L][∞]L,M_ [)][,] _T_ _C_ _∞_ where Θ(s) solves: e dΘ([e] _s)_ = _ML_ ΘE(Θ[′](s)), for s 0, [e] ds _−_ _∇_ _≥_ where Θ defines the forcing term. The estimates above provide all the ingredients to show the map is well-defined, and for a small enough S, the map is also contracting, leading to the uniqueness of the solution to (3). Similar to Lemma D.1, one can also show [d]d[E]s [=][ −][ML][|∇][Θ][E][(Θ][L,M] [)][|][2][, improving] the estimates and removing the constants’ dependence on the initial guess. This extends the local solution to the global one, as done in Step 3 for the continuous case. E PROOF OF THEOREM 5.1 Theorem 5.1 links the cost defined by ΘL,M (s) with that defined by ρ(θ, t, s) for all s. The continuous and mean-field limits are obtained, with both L and M sent to infinity. We decompose this result into two parts, discussing mean-field and continuous limits separately. We start with the full definition of "limit-admissible" for a distribution ρ. ----- **Definition E.1 For an admissible ρ(θ, t), we say ρ(θ, t) is limit-admissible if the average of a large** _number of particle presentations is bounded and Lipschitz with high probability. That is, for an_ _admissible ρ(θ, t), there are two constants C3 and C4, both greater than supt∈[0,1]_ R[k][ |][θ][|][2][dρ][(][θ, t][)] _such that, for any M stochastic process presentation {θm(t)}m[M]=1_ _[that are][ i.i.d.][ drawn from]R_ _[ ρ][(][θ, t][)][,]_ _the following properties are satisfied for any η > 0 and M >_ _[C]η[3]_ _[:]_ _1. Second moment boundedness in time:_ _θm(t)_ _C4_ _|_ _|[2]_ _≤_ _m=1_ X _≥_ 1 − _η ._ (78) sup _t∈[0,1]_ _M_ _l+1_ _L_ _l_ _m=1_ Z _L_ X _2. For all L > 0, we have_ 1 _L−1_ P _M_ _l=0_ X _l_ _L_ dt _≤_ _[C]L[2][4]_ _≥_ 1 − _η ._ (79) [4] P dt 1 _η ._ (79) _M_ _l=0_ _m=1_ Z _Ll_ _L_ _≤_ _L[2]_ ! _≥_ _−_ X X _[θ][m][(][t][)][ −]_ _[θ][m]_ We now state the two theorems that play complementary parts in Theorem 5.1. The first theorem addresses the limit in M under the assumption that L = ∞. This is the mean-field part of the analysis. **Theorem E.1limit-admissible and Let Assumptions 4.1 and 4.2 hold with some suppθ(ρini(θ, t))** _θ_ _θ[1]_ _R_ _with some 0 < k R >1 ≤_ 0k. Assume that for all t [0, 1] ρini. Suppose(θ, t) is _⊂{_ _||_ _| ≤_ _}_ _∈_ _that {θm(0; t)}m[M]=1_ _[are][ i.i.d][ drawn from][ ρ][ini][(][θ, t][)][. Suppose in addition that]_ - ρ(θ, t, s) solves (9) with the initial condition ρini(θ, t), and - θm(s; t) solves (6) with the initial condition θm(0; t). _Then for any ϵ, η, S > 0, there exists a constant C(ρini(θ, t), S) > 0 depending on ρini(θ, t), S such_ _that when M >_ _[C][(][ρ][ini]ϵ[2][(][θ,t]η_ [)][,S][)] _, we have_ P (|E(Θ(s; ·)) − _E(ρ(·, ·, s))| ≤_ _ϵ) ≥_ 1 − _η,_ _∀s < S ._ **Proof See Appendix F.** The conclusion of this result suggests that for a 1 − _η confidence of an ϵ accuracy, M grows_ polynomially with respect to 1/ϵ and 1/η. The second result considers the convergence of the parameter configuration for the discrete ResNet (1) to that for the continuous ResNet (4) as L →∞. This is the continuous-limit part of the analysis. **Theorem E.2limit-admissible and Let Assumptions 4.1 and 4.2 hold with some suppθ(ρini(θ, t))** _θ_ _θ[1]_ _R_ _with some 0 < k R >1 ≤_ 0k. Assume that for all t [0, 1] ρini. Suppose(θ, t) is _⊂{_ _||_ _| ≤_ _}_ _∈_ _that {θm(0; t)}m[M]=1_ _[are][ i.i.d][ drawn from][ ρ][ini][(][θ, t][)][. Suppose in addition that]_ - θm(s; t) solves (6) with initial condition θm(0; t), - θl,m(s) solves (3) with initial condition θm 0; _L[l]_ _._ _Then for any ϵ, η, S > 0, there exists a constant C(ρini _ (θ, t), S) > 0 depending on ρini(θ, t), S such _that when M_ _η_ _and L_ _ϵ_ _, we have for all s < S that_ _≥_ _[C][(][ρ][ini][(][θ,t][)][,S][)]_ _≥_ _[C][(][ρ][ini][(][θ,t][)][,S][)]_ P (|E(Θ(s; ·)) − _E(ΘL,M_ (s))| ≤ _ϵ) ≥_ 1 − _η ._ **Proof See Appendix G.** This theorem shows that when the width is large enough, then with high probability, in the whole training process with s < S, the difference between the loss functions defined by the discrete ResNet and its continuous counterpart decreases to 0 as L →∞. ----- F CONVERGENCE TO THE MEAN-FIELD PDE This section is dedicated to mean-field analysis and the proof of Theorem E.1. The intuition of this theorem is largely aligned with many other mean-field results, as demonstrated in (Ding et al., 2021). As argued in Section 5, to show “equivalence" between (6) and (9), we can test them on the same smooth function h(θ). Testing (9) on amounts to multiplying h on both sides of the equation by h. From integration by parts we have _δE(ρ(s))_ dρ, R[k][ ∇][θ][h][∇][θ] _δρ_ R[k][ h][ d][ρ][(][θ][) =][ −] ds that is, To test (6) on h, we let ρ = d _δE(ρ(s))_ _θh_ _θ_ _._ ds [E][(][h][) =][ E] _∇_ _∇_ _δρ_ , we let ρ = _M1_ _Mm=1_ _[δ][θ][m]_ [and obtain] _M_ _M_ P d _θh(θm) [d]_ _θh(θm)_ _[δE]_ ds [E][(][h][) = 1]M _∇_ ds _[θ][m][ =][ −]_ _∇_ _δθm_ _m=1_ _m=1_ X X We see that (9) and (6) are equivalent when tested by h, if and only if the right hand sides of the two equations above are the same, that is, _δE(ρ)_ _M [δE]_ = _θ_ (θm, t) . (80) _δθm_ _∇_ _δρ_ This claim can be established from the definitions of the Fréchet derivatives for _[δE]δρ[(][ρ][)]_ and _δθδEm_ [; see] (Ding et al., 2021, Lemma 33). To give a quantitative estimate on how quickly (6) converges to of (9), we utilize the particle method, a classical strategy for the mean-field limit. We sketch the proof here and will it more rigorous in the following subsections. We make use of two particle systems. In one system, the particles evolve themselves, while in the second, the particles are moved forward according to the underlying field constructed by the limit. In our situation, the former particle system consists of the _M stochastic processes_ _θm(s; t)_ that descend according to E(Θ(s; )). The latter particle system _{_ _}_ _·_ will be termed Θ(s; t) = {θ[e]m(s; t)}m[M]=1[; it descends according to][ E][(][ρ][(][·][,][ ·][, s][))][, the limiting cost] function. Essentially, we prove [e] _E(Θ(s; ·)) ≈_ _E_ Θ(s; t) _≈_ _E(ρ(·, ·, s)) ._ The latter approximation arises roughly from the law of large numbers, but the former needs to bee proved rigorously by tracing the two different evolving ODEs. To be more specific, let ρ(θ, t, s) be the solution to (9) with admissible initial conditions ρini(θ, t), and let θm(s; t) be the solution to (6) with initial conditions {θm(t, 0)}m[M]=1 [that are][ i.i.d][ drawn from] _ρini(θ, t). Using the definition of E in (8), we have_ _|E(ρ(·, ·, s)) −_ _E(Θ(s; ·))|_ 1 2 1 2 Ex _µ_ _g(Zρ(s)(1; x))_ _y(x)_ _g(ZΘ(s)(1; x))_ _y(x)_ _≤_ _∼_ 2 _−_ _−_ 2 _−_ Ex _µ_ _g(Z _ _ρ(s)(1; x))_ _g(ZΘ(s)(1;_ _x))_ _g(Zρ(s)(1; x)) + g(ZΘ(_ _s)(1; x))_ + _y(x)_ (81) _≤_ _∼_ _−_ _|_ _|_ _C(_ _s) g(Zρ(s)(1; x))_ _g(ZΘ(s)(1; x))_ _≤_ _L_ _−_ [ ] _C(_ _s)_ _Zρ(s)(1; x)_ _ZΘ(s)(1; x)_ _,_ _≤_ _L_ _−_ where Ls = max 10 R[k][ |][θ][|][2][ d][ρ][(][θ, t, s][) d][t,][ 1]M 10 _Mm=1_ _[|][θ][m][(][s][;][ t][)][|][2][ d][t]_ . In this derivation, we used the Lipschitz property ofnR R _g, the boundedness ofR_ P y (required in Assumptions 4.1-4.2), and theo boundedness of Zρ and ZΘ(s). Boundedness of Zρ was shown in Theorem A.2, while the bound for _ZΘ(s) will be addressed in Lemma F.3. The constant C depends on the support of ρini, as well as on_ ----- _s and the Lipschitz constant of g. It follows from (81) that to control E(ρ(·, ·, s)) −_ _E(Θ(s; ·)), we_ need to control _Zρ(s)(1; x)_ _ZΘ(s)(1; x)_ _._ (82) _−_ To do so, we employ the particle method and invent a new particle system. According to (80), we can reformulate the original particle system as dθm(s; t) _δE(ρ[dis](s))_ = _θ_ (θm(s; t)), (t, s) [0, 1] [0, ), (83) ds _−∇_ _δρ_ _∀_ _∈_ _×_ _∞_ where we denote _ρ[dis](θ, t, s) = [1]_ _δθm(s;t)(θ) ._ (84) _m=1_ X We invent a new system that follows the underlying flow governed by the limit. Define Θ(s) = _{θ[e]m(s; t)}m[M]=1[, where][ e]θm solves_ [e] dθ[e]m(s; t) _δE(ρ(s))_ = _θ_ _θm(s; t)_ _,_ (t, s) [0, 1] [0, ), (85) ds _−∇_ _δρ_ _∀_ _∈_ _×_ _∞_ with initial condition e _θm(0; t) = θm(0; t) ._ (86) As a consequence, we have _θm(s; t)_ _ρ(θ, t, s) for all (t, s). The corresponding ensemble distribu-_ _∼_ e tion is _M_ [e] _ρ[dis](θ, t, s) = M[1]_ _δθm(s;t)[(][θ][)][ .]_ (87) _m=1_ X e Now we have available particle systeme Θ(s) = _θm(s)_, a newly invented particle system Θ(s) = _{_ _}_ _{θ[e]m(s)} and the mean-field flow ρ. Accordingly, there are three versions of Z: Zρ(s) that solves (7)_ using ρ(s) and ZΘ(s) and ZΘ(s) [that solve][ (4)][ using][ Θ(][s][)][ and][ e]Θ(s), respectively. We use the[e] following relabelling for convenience: e _Zs = Zρ(s),_ _Zs[dis]_ = ZΘ(s), _Zs[dis]_ = ZΘ(s) _[.]_ (88) Similarly, there are three sets of p: pρ(s), pρdis(s), and pρ[dis](se) [that solve]e [ (11)][ using][ ρ][(][s][)][,][ ρ][dis][(][s][)][, and] _ρ[dis](s), respectively. We relabel similarly to (88) and write_ e _ps = pρ(s),_ _p[dis]s_ = pρdis(s), _p[dis]s_ = pρ[dis](s) _[.]_ (89) e e Since Θ(s) serves as a bridge, we translate the control of (82) to:e [e] _Zs(t; x) −_ _Zs[dis][(][t][;][ x][)]_ _≤_ _Zs(t; x) −_ _Z[e]s[dis][(][t][;][ x][)]_ + _Z[e]s[dis][(][t][;][ x][)][ −]_ _[Z]s[dis][(][t][;][ x][)]_ _._ (90) Bounding _Zs(t; x) −_ _Z[e]s[dis][(][t][;][ x][)]_ can be done using the law of large numbers. Bounding 1 _Zs[dis][(][t][;][ x][)][ −]_ _[Z]s[dis][(][t][;][ x][)]_ translates to controlling _m_ 0 _θm(s; t)_ dt, for which we will _[|][θ][m][(][s][;][ t][)][ −]_ [e] _|_ evaluate the difference between equations (83) and (85). Since these two equations have the same initial data, the difference between[e] _θm and_ _θm can then be controlled when the right-hand side forcing[P]_ R terms are close. This approach divides the proof naturally into two components. In Section F.1, we give the rigorous[e] 1 bound of (90), while in Section F.2, we trace the evolution of the difference _m_ 0 _[|][θ][m][(][s][;][ t][)][ −]_ _θm(s; t)_ dt in s, thus finalizing the proof for Theorem E.1. _|_ R [P] e ----- F.1 STABILITY IN THE MEAN-FIELD REGIME Here we discuss control of the two terms on the right-hand side of (90). Recall that Θ(s) and Θ(s) satisfy (83) and (85), and the two corresponding ensemble distribution are defined in (84) and (87), respectively. For any S > 0, define [e] _M_ _M_ _LS[sup]_ = 0≤t≤sup1,0≤s≤S (ZR[k][ |][θ][|][2][ d][ρ][(][θ, t, s][)][,][ 1]M _i=1_ _|θm(s; t)|[2],_ _M[1]_ _i=1_ _|θ[e]m(s; t)|[2])_ (91) X X _S = inf_ supp(ρ(θ, t, s)) _θm(s; t)_ _m=1_ [1][|][ < r][}][,][ ∀][(][t, s][)][ ∈] [[0][,][ 1]][ ×][ [0][, S][]] _,_ _R_ _r>0_ _∪{_ _}[M]_ _[⊂{][θ][||][θ]_ We have the following lemma: **Lemma F.1 For every fixed s, let Zs and Zs[dis]** _be as defined in (88). Then there exists a constant_ _C(_ _s_ ) such that for all t [0, 1], s [0, ), we have _L[sup]_ _∈_ _∈_ _∞_ _Zs(t; x) −_ _Zs[dis][(][t][;][ x][)]_ 1/2 1 _M_ 1 2 _≤_ _C(Ls[sup])_ _M_ _m=1_ Z0 _θm(s; τ_ ) − _θ[e]m(s; τ_ ) dτ ! (92) X 1 2 1/2 + C( _s_ ) _ρ[dis](θ, τ, s))_ dτ _._ _L[sup]_ 0 R[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] ! Z Z **Proof Since the statement holds for a fixed s, we eliminate all s dependence in all calculations in the** proof, for conciseness. Recalling the definitions in (88), we denote ∆(t; x) = Zs(t; x) − _Z[e]s[dis][(][t][;][ x][)][,]_ ∆(t; x) = _Zs[dis][(][t][;][ x][)][ −]_ _[Z]s[dis][(][t][;][ x][)][ .]_ It follows from the triangle inequality that e [e] _Zs(t; x) −_ _Zs[dis][(][t][;][ x][)]_ _≤_ ∆(t; x) + |∆(t; x)| . We now bound these two terms. We first apply the same argument as in the proof of Theorem A.2 [e] (see (26) in Appendix B) to obtain d ∆(t; x) 2 dt _≤_ _C(Ls[sup])_ ∆(t; x) + _ρ[dis](θ, t, s))_ R[k][ f][ (][Z][s][(][t][;][ x][)][, θ][) d(][ρ][(][θ, t, s][)][ −] [e] [e] Z Using the Grönwall inequality and the fact that[e] ∆(0; x) = 0, we have 1 2 1/2 [e] ∆(t; x) _C(_ _s_ ) _ρ[dis](θ, t, s))_ dτ _≤_ _L[sup]_ 0 R[k][ f][ (][Z][s][(][t][;][ x][)][, θ][) d(][ρ][(][θ, t, s][)][ −] [e] ! Z Z for all[e] t ∈ [0, 1]. Similarly, to bound ∆(t; x), we have (93) 2 d ∆(t; x) _|_ _|[2]_ _C(_ _s_ ) ∆(t; x) + _Zs[dis][(][t][;][ x][)][, θ]_ d(ρ[dis](θ, t, s) _ρ[dis](θ, t, s))_ _._ dt _≤_ _L[sup]_ _|_ _|[2]_ _−_ R[k][ f] Z From Assumption 4.1 and the fact that _Zdis is bounded in Theorem A.2, we havee_ e 2 _M_ 1 [e] _Zs[dis][(][t][;][ x][)][, θ]_ d(ρ[dis](θ, t, s) _ρ[dis](θ, t, s))_ _C(_ _s_ ) _θm(s; t)_ _θm(s; t)_ _−_ _≤_ _L[sup]_ _M_ _−_ [e] ZR[k][ f] _mX=1_ similar to the proof of Theorem A.2 (see (28) in Appendix B).e e 2 ! ----- Using ∆(0; x) = 0, we apply Grönwall’s inequality to obtain 1/2 ! 1 0 Z 2 _θm(s; τ_ ) _θm(s; τ_ ) dτ _−_ [e] ∆(t; x) _C(_ _s_ _|_ _| ≤_ _L[sup]_ (94) _m=1_ The result is obtained from adding (93) and (94). The difference in ps and p[dis]s [:] **Lemma F.2 For every fixed s** [0, ), let ps and p[dis]s _be defined in (89). There exists a constant_ _∈_ _∞_ _C(_ _s) with_ _s,_ _s_ _defined in (91) such that for all t_ [0, 1]: _R_ _R_ _L[sup]_ _∈_ _ps(t; x) −_ _p[dis]s_ [(][t][;][ x][)] 1/2 1 _M_ 1 2 _≤_ _C(Rs, Ls[sup])_ _M_ _m=1_ Z0 _θm(s; τ_ ) − _θ[e]m(s; τ_ ) dτ ! X 1 2 1/2 (95) + C( _s,_ _s_ ) _ρ[dis](θ, τ, s))_ dτ _R_ _L[sup]_ 0 R[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] ! Z Z 1 2 1/2 + C( _s,_ _s_ ) _ρ[dis](θ, τ, s))_ dτ _._ _R_ _L[sup]_ 0 R[k][ ∂][z][f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] ! Z Z **Proof As in the previous proof, we eliminate dependence on s in some notation, for conciseness.** Denoting ∆p(t; x) = ps(t; x) − _p[dis]s_ [(][t][;][ x][)][, we recall (11) to have:] d ∆p(t; x) _|_ _|[2]_ dt _≤_ 2 ZR[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][(][θ, t, s][)] _[|][∆][p][(][t][;][ x][)][|][2]_ + 2 ∆p(t; x) _p[dis]s_ _|_ _|_ R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][(][θ, t, s][)][ −] Z _C(_ _s_ ) ∆p(t; x) _≤_ _L[sup]_ _|_ _|[2]_ _s_ [(][t][;][ x][)][, θ][) d][ρ][dis][(][θ, t, s][)] R[k][ ∂][z][f] [(][Z] [dis] _s_ [(][t][;][ x][)][, θ][) d][ρ][dis][(][θ, t, s][)] R[k][ ∂][z][f] [(][Z] [dis] + 2 R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][(][θ, t, s][)][ −] _C(_ _s_ ) ∆p(t; x) _≤_ _L[sup]_ _|_ _|[2]_ 2 + 6 _ρ[dis](θ, t, s)_ R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][(][θ, t, s][)][ −] R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][e] Z Z 2 + 6 _ρ[dis](θ, t, s) −_ R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][e] R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][dis][(][θ, t, s][)] Z Z (I) 2 | {z } + 6 _s_ [(][t][;][ x][)][, θ][) d][ρ][dis][(][θ, t, s][)] _,_ R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][dis][(][θ, t, s][)][ −] R[k][ ∂][z][f] [(][Z] [dis] Z Z (II) where we use| (13) from Assumption 4.1 together with{z (18) and (31) in the second inequality. To} bound (I) on the right-hand side, we recall the definition (84) and (87), and use Assumption 4.1 (14) ----- along with the boundedness of Z (as shown in (18)) to obtain _M_ 1 (I) _∂zf_ (Zs(t; x), θm(s; t)) _∂zf_ (Zs(t; x), _θm(s; t))_ _≤_ _M_ _−_ _m=1_ X 2 _M_ [e] 1 _≤C(Rs, Ls[sup])_ _M_ _m=1_ _|θm(s; t) −_ _θ[e]m(s; t)|!_ X _M_ 1 2 _≤C(Rs, Ls[sup])_ _M_ _m=1_ _θm(s; t) −_ _θ[e]m(s; t)_ ! _,_ X where we use Hölder’s inequality in the last inequality. For (II), we have 2 ! (96) (97) 2 _M_ 1 (II) _∂zf_ (Zs(t; x), θm(s; t)) _∂zf_ (Zs[dis][(][t][;][ x][)][, θ][m][(][s][;][ t][))] _≤_ _M_ _m=1_ _−_ ! X _C(_ _s,_ _s_ ) _Zs(t; x)_ _Zs[dis][(][t][;][ x][)][|][2][ .]_ _≤_ _R_ _L[sup]_ _|_ _−_ By substituting (96) and (97) into the bound above, we obtain d ∆p(t; x) _|_ _|[2]_ dt 1 2 =C( _s_ ) ∆p(t; x) + C( _s,_ _s_ ) _θm(s; t)_ _θm(s; t)_ + _Zs(t; x)_ _Zs[dis][(][t][;][ x][)][|][2]_ _L[sup]_ _|_ _|[2]_ _R_ _L[sup]_ _M_ _m=1_ _−_ [e] _|_ _−_ ! X 2 + 6 _ρ[dis](θ, t, s)_ _._ R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][ρ][(][θ, t, s][)][ −] R[k][ ∂][z][f] [(][Z][s][(][t][;][ x][)][, θ][) d][e] Z Z (98) The “initial condition" for ps and p[dis]s yields _|∆p(1; x)| ≤_ _C(Ls[sup])|Zs(1; x) −_ _Zs[dis][(1;][ x][)][|][ .]_ The result is obtained when we substitute (92) into (98) and use the Grönwall’s inequality. F.2 PROOF OF THEOREM E.1 With the quantitative description of (90) presented in Lemma F.1, we complete the proof for Theorem E.1 in this section. Recall from (55) that R[k][ |][θ][|][2][ d][ρ][ini][(][θ, t][)] _Rini = infr>0_ supp(ρini(t)) ⊂ _θ_ _|θ[1]| < r_ _, ∀t ∈_ [0, 1] _,_ _Lini[sup]_ [= sup]0≤t≤1 and note that ini _θm,[1](0; t)_ for all m, t. Define _R_ _≥|_ _|_ _θm(0; t)_ _,_ _|_ _|[2]_ _m=1_ X ini = sup _L[dis][,][sup]_ 0≤t≤1 We note that when M is large, L[dis]ini _[,][sup]_ is close to Lini[sup] [(which has no randomness) with high] probability. We have the following lemma: **Lemma F.3 For a given S > 0, there exists a constant C (S, Rini) such that for any t ∈** [0, 1], s ∈ [0, S], we have 1 _M_ _|θm(s; t)|[2]_ _≤_ _C(S, Rini, Lini[dis][,][sup]),_ _m=1_ X _θm(s; t)_ _m=1_ [1][| ≤] _[C][(][S,][ R][ini][,][ L][dis]ini_ _[,][sup])_ _,_ _{_ _}[M]_ _[⊂{][θ][||][θ]_ _}_ (99) ----- _Furthermore, for any x with |x| < Rµ (as in Assumption 4.2, item 4), and any s ∈_ [0, S] and _t ∈_ [0, 1], the ODE solution is bounded as follows: _Zs[dis][(][t][;][ x][)]_ _≤_ _C(S, Rini, Lini[dis][,][sup]),_ (100) _while the following bound holds on p[dis]s_ _[:]_ _p[dis]s_ [(][t][;][ x][)] _≤_ _C(S, Rini, Lini[dis][,][sup]) ._ (101) The bound (99) is a result of Corollary D.3. The bounds (100) and (101) are obtained using the same arguments as in Theorem A.2 and Lemma C.1. The next lemma bounds the support and second moment of _ρ[dis](θ, t, s)._ **Lemma F.4 Under conditions of Theorem E.1, for any S > 0, there is a constant C(S,** ini, ini ) e _R_ _L[dis][,][sup]_ _depending only on_ ini, ini _, S such that for any t_ [0, 1], s [0, S], we have _R_ _L[dis][,][sup]_ _∈_ _∈_ 1 _M_ _m=1_ _|θ[e]m(s; t)|[2]_ _≤_ _C(S, Rini, Lini[dis][,][sup]),_ (102) X _θm(s; t)_ _m=1_ [1][| ≤] _[C][(][S,][ R][ini][,][ L][dis]ini_ _[,][sup])_ _,_ _{[e]_ _}[M]_ _[⊂{][θ][||][θ]_ _}_ **Proof Similar to the proof of Proposition D.1, we multiply (85) by** _θm(s; t) on both sides and utilize_ the bound (41) from Lemma C.2, where in (41) is replaced by C(S, ini, ini ) according to _L_ _R_ _L[dis][,][sup]_ Corollary D.3. We thus obtain [e] _θm(s; t)_ _C(S,_ ini, ini ) _θm(0; t)_ + 1 _,_ _|[e]_ _| ≤_ _R_ _L[dis][,][sup]_ _|[e]_ _|_ and _θm,[1](s; t)_ _C(S,_ ini, ini ) _θm,[1](0; t)_ + 1 _|[e]_ _| ≤_ _R_ _L[dis][,][sup]_ _|[e]_ _|_ which implies (102) by (86). Denote 0 = max ini _,_ ini 0 should be bound by _C4 with high probability. We are now ready for the main proof of this section. L[sup]_ _{L[dis][,][sup]_ _L[sup][}][. According to Definition E.1][ (78)][,][ L][sup]_ **Proof [Proof of Theorem E.1] First, using Lemmas F.3, F.4, there is a constant C(S,** ini, 0 ) _R_ _L[sup]_ depending only on ini, 0 _, S such that for any t_ [0, 1], s [0, S] _R_ _L[sup]_ _∈_ _∈_ _M_ _M_ 1 2 1 max (ZR[k][ |][θ][|][2][ d][ρ][(][θ, t, s][)][,] _M_ _m=1_ _θm(s; t)_ _,_ _M_ _m=1_ _|θm(s; t)|[2])_ _≤_ _C(S, Rini, L0[sup]),_ X X _M_ supp(ρ(θ, t, s)) _θm(s; t)_ _m=1_ [e]θm(s; t) _θ_ _θ[1]_ _C(S,_ ini, 0 ) _,_ _∪{_ _}[M]_ _[∪]_ n om=1 _[⊂]_ _|_ _| ≤_ _R_ _L[sup]_ (103) e Recalling (81), we have _s_ _C(S,_ ini, 0 ) and _L_ _≤_ _R_ _L[sup]_ _|E(ρ(·, ·, s)) −_ _E(Θ(s; ·))| ≤_ _C(S, Rini, L0[sup])_ _Zs(1; x) −_ _Zs[dis][(1;][ x][)]_ _._ (104) Furthermore, according to Lemma F.1 (92), from (103) _Zs(t; x) −_ _Zs[dis][(][t][;][ x][)]_ 1/2 1 _M_ 1 2 _≤_ _C(S, Rini, L0[sup])_ _M_ _m=1_ Z0 _θm(s; τ_ ) − _θ[e]m(s; τ_ ) dτ ! (105) X 1 2 1/2 + C(S, ini, 0 ) _ρ[dis](θ, τ, s))_ dτ _._ _R_ _L[sup]_ 0 R[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] ! Z Z The second term in this bound can be treated using the law of large numbers. We focus on controlling the first term. ----- Step 1: Estimating _M1_ _Mm=1_ 10 _θm(s; t)_ _θm(s; t)_ 2 dt. Defining _−_ [e] P R ∆t,m(s) = θm(s; t) _θm(s; t),_ _−_ [e] we note that ∆t,m(0) = 0. By taking the difference of (83) and (85) and multiplying both sides by _|_ _|_ ∆t,m(s), we obtain d ∆t,m(s) _|_ _|[2]_ ds = 2 ∆t,m(s), Ex _µ_ _∂θf_ (Zs(t; x), _θm)ps(t; x)_ _∂θf_ (Zs[dis][(][t][;][ x][)][, θ][m][)][p]s[dis][(][t][;][ x][)] _−_ _∼_ _−_ D E = 2 ∆t,m(s), Ex _µ_ _∂θf_ (Zs(t; x),[e]θm)ps(t; x) _∂θf_ (Zs(t; x), _θm)p[dis]s_ [(][t][;][ x][)] _−_ - _∼_ _−_ + (I) [e] [e] | {z } 2 ∆t,m(s), Ex _µ_ _∂θf_ (Zs(t; x), _θm)p[dis]s_ [(][t][;][ x][)][ −] _[∂][θ][f]_ [(][Z]s[dis][(][t][;][ x][)][, θ][m][)][p]s[dis][(][t][;][ x][)] _−_ - _∼_ (II) [e] For (I), we have from the bounds of| _Zs in (18), respectively, that{z_ (I) _C(S,_ ini, 0 ) _θm_ + 1 Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _,_ _|_ _| ≤_ _R_ _L[sup]_ _|[e]_ _|_ _∼_ _−_ which can be controlled using Lemma F.2 (95). For (II), we have [] (106) (II) _C(S,_ ini, 0 )Ex _µ_ _∂θf_ (Zs(t; x), _θm)_ _∂θf_ (Zs[dis][(][t][;][ x][)][, θ][m][)] _|_ _| ≤_ _R_ _L[sup]_ _∼_ _−_ _≤C(S, Rini, L0[sup])_ Ex∼µ _Zs(t; x) −_ _Zs[e][dis][(][t][;][ x][)]_ + |θ[e]m − _θm|_ _,_ where the first term can be controlled using Lemma F.1h (92). In both estimates, we used the propertyi [] of f in Assumption 4.1 and bounds on Z, p, θm,[1], and _θm,[1]. By substituting these estimates into_ (106), we obtain d ∆t,m(s) [e] _|_ ds _|[2]_ _≤_ _C(S, Rini, L0[sup])|∆t,m(s)|[2]_ + C(S, ini, 0 ) ∆t,m(s) Ex _µ_ _Zs(t; x)_ _Zs[dis][(][t][;][ x][)]_ _R_ _L[sup]_ _|_ _|_ _∼_ _−_ + C(S, ini, 0 ) ∆t,m(s) _θm_ + 1 Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _,_ _R_ _L[sup]_ _|_ _|_ _|[e]_ _|_ _∼_ _−[]_ which implies that [] d ∆t,m(s) _|_ _|[2]_ ds _m=1_ _C(S,_ ini, 0 ) _≤_ _R_ _L[sup]_ + C(S, ini, 0 _R_ _L[sup]_ + C(S, ini, 0 _R_ _L[sup]_ ∆t,m(s) _|_ _|[2]_ _m=1_ X 1 + C(S, ini, 0 ) ∆t,m(s) Ex _µ_ _Zs(t; x)_ _Zs[dis][(][t][;][ x][)]_ _R_ _L[sup]_ _M_ _m=1_ _|_ _|!_ _∼_ _−_ XM [] 1 + C(S, ini, 0 ) ∆t,m(s) _θm_ + 1 Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _R_ _L[sup]_ _M_ _|_ _|_ _|[e]_ _|_ _∼_ _−_ _m=1_ _MX_ [!] [] 1 _C(S,_ ini, 0 ) ∆t,m(s) + C(S, ini, 0 )Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _≤_ _R_ _L[sup]_ _M_ _m=1_ _|_ _|[2]!_ _R_ _L[sup]_ _∼_ _−_ X [2][] + C(S, ini, 0 )Ex _µ_ _Zs(t; x)_ _Zs[dis][(][t][;][ x][)]_ _,_ _R_ _L[sup]_ _∼_ _−_ (107) [2][] ----- where in the last inequality we use Hölder’s inequality _M_ 1 ∆t,m(s) _θm_ + 1 Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _M_ _|_ _|_ _|[e]_ _|_ _∼_ _−_ _m=1_ X 1/2 [!] 1/2 _M_ _M_ [] 1 1 2 ∆t,m(s) _θm_ + 1 Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _≤_ _M_ _m=1_ _|_ _|[2]!_ _M_ _m=1_ _|[e]_ _|_ ! _∼_ _−_ X X 1/2 _M_ 1 _C(S,_ ini, 0 ) ∆t,m(s) Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _≤_ _R_ _L[sup]_ _M_ _m=1_ _|_ _|[2]!_ _∼_ _−_ XM [] 1 _C(S,_ ini, 0 ) ∆t,m(s) + Ex _µ_ _ps(t; x)_ _p[dis]s_ [(][t][;][ x][)] _≤_ _R_ _L[sup]_ " _M_ _m=1_ _|_ _|[2]!_ _∼_ _−_ X [2][#] Noting the estimate in Lemma F.1-F.2, we obtain _M_ 1 _m=1_ 0 _[|][∆][t,m][(][s][)][|][2][ d][t]_ ds P R d _M[1]_ _M_ 1 1 _C(S, Rini, L0[sup])_ _M_ _m=1_ Z0 X 1 + C(S, Rini, L0[sup])Ex∼µ 0 Z 1 + C(S, Rini, L0[sup])Ex∼µ 0 Z ∆t,m(s) dt _|_ _|[2]_ _C(S,_ ini, 0 _≤_ _R_ _L[sup]_ + C(S, Rini, L0[sup])Ex∼µ 0 R[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][−]ρ[e][dis](θ, τ, s)) Z Z 1 + C(S, Rini, L0[sup])Ex∼µ 0 R[k][ ∂][z][f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][−]ρ[e][dis](θ, τ, s)) Z Z which implies, using Grönwall’s inequality, that dτ ! 2 dτ 1 0 Z ∆t,m(s) dt _|_ _|[2]_ _m=1_ _m=1_ _S_ 1 2 _≤_ _C(S, Rini, L0[sup])Ex∼µ_ 0 0 R[k][ f][ (][Z][s][(][t][;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] _ρ[e][dis](θ, τ, s))_ dτ ds! Z Z Z _S_ 1 2 + C(S, Rini, L0[sup])Ex∼µ 0 0 R[k][ ∂][z][f][ (][Z][s][(][t][;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] _ρ[e][dis](θ, τ, s))_ dτ ds! Z Z Z (108) where we use ∆t,m(0) = 0. _|_ _|_ _≤_ _C(S, Rini, L0[sup])Ex∼µ_ ----- Step 2: Completing the proof. By substituting (108) into (92), noticing _s_ _C(_ ini, S), we obtain _R_ _≤_ _R_ _Zs(t; x) −_ _Zs[dis][(][t][;][ x][)]_ 1/2 _S_ 1 2 _≤C(S, Rini, L0[sup])_ Ex∼µ Z0 Z0 ZR[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] _ρ[e][dis](θ, τ, s))_ dτ ds! (I) | {z } _S_ 1 2 + C(S, Rini, L0[sup]) Ex∼µ Z0 Z0 ZR[k][ ∂][z][f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] _ρ[e][dis](θ, τ, s))_ dτ ds! (II) 1/2 | {z } 1 2 + C(S, ini, 0 ) _ρ[dis](θ, τ, s))_ dτ _,_ _R_ _L[sup]_ 0 R[k][ ∂][z][f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] Z Z (III) (109) | {z } All three terms in (109) can be controlled in expectation. Here we take the expectation with respect to the randomness initial drawing of {θm(0; t)}m[M]=1[. For (I), we have] _S_ 1 2 E(I) = E Ex _µ_ _ρ[dis](θ, τ, s))_ dτ ds _∼_ 0 0 R[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] !! Z Z Z _S_ 1 2[!] = Ex _µ_ E _ρ[dis](θ, τ, s))_ dτ ds _∼_ 0 0 R[k][ f][ (][Z][s][(][τ] [;][ x][)][, θ][) d(][ρ][(][θ, τ, s][)][ −] [e] ! Z Z Z _S_ 1 ini [)] Ex _µ_ _≤_ _[C][(][S,][ R]M[ini][,][ L][sup]_ _∼_ 0 0 R[k][ |][f][ (][Z][s][(][τ] [;][ x][)][, θ][)][ |][2][ d][ρ][(][θ, τ, s][) d][τ][ d][s]! Z Z Z ini [)] _,_ _≤_ _[C][(][S,][ R]M[ini][,][ L][sup]_ 1/2 where we use _θm(s; t) ∼_ _ρ(θ, t, s) in the first inequality. In second inequality, if k1 < k, we use first_ inequality of Assumption 4.1 (15) with _θ[1]_ _≤_ _C(S, Rini, Lini[sup][)][ and][ |][Z][s][| ≤]_ _[C][(][S,][ R][ini][,][ L]ini[sup][)][. If]_ _k1 = k, we use[e] (12) and |θ| =_ _θ[1]_ _≤_ _C(S, Rini, Lini[sup][)][ and][ |][Z][s][| ≤]_ _[C][(][S,][ R][ini][,][ L]ini[sup][)][ in the second]_ inequality. By similar reasoning, we obtain ini [)] ini [)] E(II) _,_ E(III) _._ _≤_ _[C][(][S,][ R]M[ini][,][ L][sup]_ _≤_ _[C][(][S,][ R]M[ini][,][ L][sup]_ From Markov’s inequality, these bounds imply that when M > _[C][(][R][ini]ϵ[2][,S,]η_ _[L]ini[sup][)]_, we have P (I) < ϵ[2] _∩_ (II) < ϵ[2] _∩_ (III) < ϵ[2][ ] _> 1 −_ _η/2 ._ (110) Finally, using Definition E.1 (78), when _M >_ [2][C]η [3] [,] P ( 0 _C4)_ 1 _η/2 ._ (111) _L[sup]_ _≤_ _≥_ _−_ By substituting (110) and (111) into (109), we see that there exists a constant C( ini, C3, C4, S) _R_ such that for any ϵ, η > 0, when M > _[C][(][R][ini]ϵ[,C][2]η[3][,C][4][,S][)]_ we obtain that P _Zs(1; x) −_ _Zs[dis][(1;][ x][)]_ _< ϵ_ _> 1 −_ _η ._ By using this result and (111) in conjunction with (104), we complete the proof. ----- G CONVERGENCE TO THE CONTINUOUS LIMIT This section is dedicated to the continuous limit and, in particular, the proof of Theorem E.2. G.1 STABILITY WITH DISCRETIZATION Before proving Theorem E.2, and similarly to Appendix F.1, we first consider the stability of Z and p under discretization. Defining the path of parameters Θ(t) = {θm(t)}m[M]=1 [and the set of parameters] ΘL,M = {θl,m}l[L]=0[−][1],m[,M]=1[, we have the following lemma.] **Lemma G.1 Suppose that Assumption 4.1 holds and that x is in the support of µ. Denoting** _M_ _θl,m_ _,_ [1] _|_ _|[2]_ _M_ _i=1_ X _L[sup]_ = 0≤supt≤1,l _θm(t)_ _|_ _|[2]_ _i=1_ X (112) = inf _θl,m_ _m=1,l=1_ _m=1_ [1][|][ < r][}][,][ ∀][t][ ∈] [[0][,][ 1]] _,_ _R_ _r>0_ _{_ _}[M,L]_ _[∪{][θ][m][(][t][)][}][M]_ _[⊂{][θ][||][θ]_ _there exists a constantn C(R, L[sup]) depending only on R, L[sup]_ _such that for any 0 ≤ol ≤_ _L −_ 1, we _have_ sup _ZΘ(t; x)_ _ZΘL,M (l; x)_ _,_ _ZΘ(t; x)_ _ZΘL,M (l + 1; x)_ _l_ _−_ _−_ _L_ _L_ _[≤][t][≤]_ _[l][+1]_ _L_ 1 _M_ _l+1_ 1/2 (113) 1 _−_ _L_ _C(_ _,_ ) _θl,m_ _θm(τ_ ) dτ + _[C][(][R][,][ L][sup][)]_ _,_ _≤_ _R_ _L[sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _−_ _|[2]_ ! _L_ X X _and_ sup _pΘ(t; x)_ _pΘL,M (l; x)_ _l_ _−_ _L_ _L_ _[≤][t][≤]_ _[l][+1]_ _L_ 1 _M_ _l+1_ 1/2 (114) 1 _−_ _L_ _C(_ _,_ ) _θl,m_ _θm(τ_ ) dτ + _[C][(][R][,][ L][sup][)]_ _._ _≤_ _R_ _L[sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _−_ _|[2]_ ! _L_ X X **Proof Define** _Z(t; x) = ZΘ(t; x),_ _p(t; x) = pΘ(t; x),_ and _L−1_ _L−1_ _Z(t; x) =_ _ZΘL,M (l; x)1 lL_ _L_ _[,]_ _p(t; x) =_ _pΘL,M (l; x)1 lL_ _[<t][≤]_ _[l][+1]L_ _[,]_ (115) _l=0_ _[≤][t<][ l][+1]_ _l=0_ X X with e e _Z(1; x) = ZΘL,M (L; x),_ _p(0; x) = pΘL,M (0; x) ._ (116) Using (1), (72), Assumption 4.1, and Lemma D.2 (73) and (75), we obtain for all l = 0, 1, . . ., L 1 that e e _−_ _ZΘL,M (l + 1; x)_ _ZΘL,M (l; x)_ _< [C][(][L][sup][)]_ _,_ _−_ _L_ (117) _pΘL,M (l + 1; x)_ _pΘL,M (l; x)_ _< [C][(][L][sup][)]_ _._ _−_ _L_ Now define ∆t by ∆t = Z(t; x) − _Z[e](t; x) ._ For t ∈ [ _L[l]_ _[,][ l][+1]L_ []][, we have from (4) that] _M_ _t_ ∆t ∆ _l_ + [1] _f_ (Z(τ ; x), θm(τ )) dτ _|_ _| ≤_ _L_ _M_ _l_ _|_ _|_ _m=1_ Z _L_ X _M_ _l+1_ _L_ (118) ∆ _l_ + _[C][(][L][sup][)]_ ( _θm(τ_ ) + 1) dτ _≤_ _L_ _M_ _l_ _|_ _|[2]_ _m=1_ Z _L_ X ∆ _l_ + _[C][(][L][sup][)]_ _,_ _≤_ _L_ _L_ ----- where we use (12), (18), and (112) in the last two inequalities. From (1) and (4), we obtain further that _M_ _l+1_ 1 _L_ ∆ _l+1_ = ∆ _l_ + _f_ (Z(τ ; x), θm(τ )) _f_ _Z(τ_ ; x), θl,m dτ _L_ _L_ _M_ _l_ _−_ 1 _mXM=1_ Z _Ll+1L_ e ∆ _l_ + _f_ (Z(τ ; x), θm(τ )) _f (Z(τ_ ; x), θl,m) dτ _≤_ _L_ _M_ _l_ _−_ _m=1_ Z _L_ _M_ Xl+1 1 _L_ + _f_ (Z(τ ; x), θl,m) _f_ _Z(τ_ ; x), θl,m dτ _M_ _l_ _−_ (I) _mX=1_ Z _L_ 1 _M_ _l+1L_ e ∆ _l_ + C( ) ( _θm(τ_ ) + _θl,m_ + 1) _θm(τ_ ) _θl,m_ dτ _≤_ _L_ _L[sup]_ _M_ _m=1_ Z _Ll_ _|_ _|_ _|_ _|_ _|_ _−_ _|_ ! X _M_ 1 + C( ) ∆ξ ( _θl,m_ + 1) _L[sup]_ _|_ _|_ _ML_ _m=1_ _|_ _|[2]_ ! X _M_ _l+1_ (II) 1 _L_ 1 + _[C][(][L][sup][)]_ ∆ _l_ + C( ) ( _θm(τ_ ) + _θl,m_ + 1) _θm(τ_ ) _θl,m_ dτ _≤_ _L_ _L_ _L[sup]_ _M_ _l_ _|_ _|_ _|_ _|_ _|_ _−_ _|_ _mX=1_ Z _L_ + _[C][(][L][sup][)]_ _,_ _L[2]_ where ξ ∈ [ _L[l]_ _[,][ l][+1]L_ []][, and we used the mean-value theorem with][ (13)][,][ (18)][,][ (73)][ in (I) and][ (112)][,][ (118)] in (II). By applying this bound iteratively, we obtain _l−1_ _j=0_ X _j+1_ _l_ 1 _M_ _j+1_ _−_ _L_ ∆ _l_ _C(_ ) ∆0 +C( ) ( _θm(τ_ ) + _θl,m_ + 1) _θm(τ_ ) _θl,m_ dτ + _[C][(][L][sup][)]_ _L_ _≤_ _L[sup]_ _|_ _|_ _L[sup]_ _M_ _j=0_ _m=1_ Z _Lj_ _|_ _|_ _|_ _|_ _|_ _−_ _|_ _L_ X X [1] where ∆0 = 0. By combining this bound with (118) and using Hölder’s inequality with (112), we _|_ _|_ obtain that _L_ 1 _M_ _l+1_ 1/2 1 _−_ _L_ ∆t _C(_ ) _θl,m_ _θm(τ_ ) dτ + _[C][(][L][sup][)]_ _._ _|_ _| ≤_ _L[sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _−_ _|[2]_ ! _L_ X X By combining (119) with (117), we prove (113). To prove (114), we define ∆p(t; x) = p(t; x) _p(t; x) ._ _−_ Similarly to (34), we obtain e ∆p(1; x) _C(_ ) _Z(1; x)_ _Z(1; x)_ _|_ _| ≤_ _L[sup]_ _−_ _L_ 1 _M_ _l+1_ 1/2 [e] 1 _−_ _L_ _C(_ ) _θl,m_ _θm(τ_ ) dτ + _[C][(][L][sup][)]_ _._ _≤_ _L[sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _−_ _|[2]_ ! _L_ X X _l_ For t _L_ _[,][ l][+1]L_ and using (11), we obtain that _∈_ _l + 1_ _M_ _l+1L_ ∆p (t; x) ; x [+ 1] _∂zf_ (Z(τ ; x), θm(τ )) _p(τ_ ; x) dτ _|_ _| ≤_ _L_ _M_ _m=1_ Zt _|_ _| |_ _|_ X _M_ _l+1_ [∆][p] _l + 1_ _L_ _≤_ _L_ ; x [+][ C][(][L]M[sup][)] _l_ (|θm(τ )|[2] + 1) dτ _m=1_ Z _L_ X _l + 1_ [∆][p] ; x [+][ C][(][L][sup][)] _,_ _≤_ _L_ _L_ [∆][p] (119) (120) (121) ----- where we use (13), (18), and (31) in the second inequality and the definition of L[sup] from (112) in the last line. From (11), we obtain that _l_ _l + 1_ _p[⊤]_ = p[⊤] _L_ [;][ x] _L_ while (72) implies that _l+1_ ; x + [1] _p[⊤]_ (τ ; x) ∂zf (Z(τ ; x), θm(τ )) dτ, _m=1_ _L_ while (72) implies that _M_ _l+1_ _L_ _l_ _l + 1_ _l + 1_ _p[⊤]_ _L_ [;][ x] = _p[⊤]_ _L_ ; x + M[1] _l_ _p[⊤]_ _L_ ; x _∂zf_ (ZΘL,M (l; x), θl,m) dτ, _m=1_ Z _L_ X wheree _p is defined in (115), (116). e_ e By bounding differences of these two expressions, we have e _l_ _l + 1_ ; x _L_ [;][ x] _L_ _[≤]_ _M_ _l+1_ _L_ _l + 1_ + [∆][p]M[1] _l_ [∆][p] _p[⊤]_ _L_ ; x _∂zf_ (Z(τ ; x), θm(τ )) [d][τ] _m=1_ Z _L_ X (I) _[p][⊤]_ [(][τ] [;][ x][)][ ∂][z][f] [(][Z][(][τ] [;][ x][)][, θ][m][(][τ] [)) d][τ][ −] [e] _M_ _l+1_ _L_ | _l + 1_ {z _l + 1_ } + M[1] _l_ _p[⊤]_ _L_ ; x _∂zf_ (Z(τ ; x), θm(τ )) − _p[⊤]_ _L_ ; x _∂zf_ (ZΘL,M (l; x), θm(τ )) [d][τ] _m=1_ Z _L_ X [e] (II) e _M_ _l+1_ _L_ | _l + 1_ {z _l + 1_ } + M[1] _l_ _p[⊤]_ _L_ ; x _∂zf_ (ZΘL,M (l; x), θm(τ )) − _p[⊤]_ _L_ ; x _∂zf_ (ZΘL,M (l; x), θl,m) [d][τ] _m=1_ Z _L_ X [e] (III) e (122) | {z } We bound (I), (II), and (III) in turn. (I): Using (13), (18), and (112), we obtain that (I) _≤_ _[C][(][L]L[sup][)]_ ∆p(t; x) _|_ _|_ (II): Using Assumption 4.1 (14) together with (18), (73), (75), and (112), we obtain that _l+1_ (II) _≤_ _[C][(][R]M[,][ L][sup][)]_ _≤_ _[C][(][R][,]L[ L][sup][)]_ _|Z(τ_ ; x) − _ZΘL,M (l; x)| dτ_ _m=1_ 1/2 + [1] _L_ ! _l[′]_ +1 _L_ _θl[′],m_ _θm(τ_ ) dτ _lL[′]_ _|_ _−_ _|[2]_ _L−1_ _l[′]=0_ X _,_ _m=1_ where we make use of (113) in the last inequality. (III): Using Assumption 4.1 item 3 together with (73), (75), and (112), we obtain that _l+1_ (III) _≤_ _[C][(][R]M[,][ L][sup][)]_ _θm(τ_ ) _θl,m_ dτ _|_ _−_ _|_ 1/2 _M_ _θm(τ_ ) _θl,m_ _m=1_ _|_ _−_ _|[2]!_ X _m=1_ _l+1_ _L_ _C(_ _,_ ) _≤_ _R_ _L[sup]_ _l_ Z dτ ----- By substituting these three bounds and (121) into (122), we obtain _l_ _l + 1_ 1 + _[C][(][R][,][ L][sup][)]_ ; x _L_ [;][ x] _L_ _L_ _[≤]_ _L_ 1 _M_ _l[′]_ +1 [∆][p] 1[∆][p]− _L_ + _[C][(][R][,][ L][sup][)]_ _θl′,m_ _θm(τ_ ) dτ _L_ _M_ _l[′]=0_ _m=1_ Z _lL[′]_ _|_ _−_ _|[2]_ X X 1/2 ! + [1] 1/2 _M_ _θm(τ_ ) _θl,m_ _m=1_ _|_ _−_ _|[2]!_ X _l+1_ _L_ + C( _,_ ) _R_ _L[sup]_ _l_ Z dτ + _[C][(][R][,][ L][sup][)]_ _L[2]_ By applying this bound iteratively, and using (120) and (121), we obtain _L_ 1 _M_ _l+1_ 1/2 1 _−_ _L_ ∆p(t; x) _C(_ _,_ ) _θl,m_ _θm(τ_ ) dτ _|_ _| ≤_ _R_ _L[sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _−_ _|[2]_ ! X X where we also use Hölder’s inequality to write _L_ 1 _l+1_ _M_ 1/2 _−_ _L_ 1 _C(_ _,_ ) _θm(τ_ ) _θl,m_ dτ _R_ _L[sup]_ _l=0_ Z _Ll_ _M_ _m=1_ _|_ _−_ _|[2]!_ X X _L_ 1 _M_ _l+1_ 1/2 1 _−_ _L_ _C(_ _,_ ) _θl,m_ _θm(τ_ ) dτ _≤_ _R_ _L[sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _−_ _|[2]_ ! X X + [1] _,_ (123) We obtain (114) by combining (123) with (121). G.2 PROOF OF THEOREM E.2 We denote by θm(s; t) the solution to (6) with initial {θm(0; t)}m[M]=1 [that are][ i.i.d][ drawn from] _ρini(θ, t) . Further, θl,m(s) is a solution to (3) with initial value θl,m(0) = θm_ 0; _L[l]_ for 0 _l_ _≤_ _≤_ _L −_ 1 and 1 ≤ _i ≤_ _M_ . Define ini = sup _L[dis][,][sup]_ 0≤t≤1 _θm(0; t)_ _|_ _|[2]_ _i=1_ X and recall ini defined in (55). According to Definition E.1, ini is bounded with high probability. _R_ _L[dis][,][sup]_ Then, we have the following lemma: **Lemma G.2 For fixed S > 0 and any s** [0, S], there exists a constant C(S, ini, ini ) _∈_ _R_ _L[dis][,][sup]_ _depending only on S,_ ini, ini _such that_ _R_ _L[dis][,][sup]_ _θl,m(s)_ _C(S,_ ini, ini ), _|_ _|[2]_ _≤_ _R_ _L[dis][,][sup]_ _m=1_ X (124) _θl,m(s)_ _m=1,l=1_ _θ_ _θ[1]_ _C(S,_ ini, ini ) _,_ _{_ _}[M,L]_ _[⊂]_ _|_ _| ≤_ _R_ _L[dis][,][sup]_ n o _Furthermore, the ODE solution and pΘL,M_ (s) are bounded as follows, for any x in the support of µ _and l = 0, 1, . . ., L −_ 1: _ZΘL,M_ (s)(l + 1; x) _C_ _S,_ ini _,_ ini _,_ (125) _≤_ _L[dis][,][sup]_ _R_ _and_ _pΘL,M_ (s)(l; x) _C_ _S,_ ini _,_ ini _._ (126) _≤_ _L[dis][,][sup]_ _R_ ----- The proof is quite similar to that of Lemma F.3, so we omit the details. We are now ready to prove Theorem E.2. **Proof [Proof of Theorem E.2] From (99) and (124) we obtain for all t ∈** [0, 1], s ∈ [0, S], _M_ _θl,m(s)_ _,_ [1] _|_ _|[2]_ _M_ _m=1_ X _C(S,_ ini, ini ), _≤_ _R_ _L[dis][,][sup]_ _θm(s; t)_ _|_ _|[2]_ _m=1_ X max (127) _θm(s; t)_ _m=1_ _m=1,l=1_ _θ_ _θ[1]_ _C(S,_ ini, ini ) _,_ _{_ _}[M]_ _[∪{][θ][l,m][(][s][)][}][M,L]_ _[⊂]_ _|_ _| ≤_ _R_ _L[dis][,][sup]_ n o where C(S, ini, ini ) is a constant depending on S, ini, and ini . _R_ _L[dis][,][sup]_ _R_ _L[dis][,][sup]_ From a similar derivation to (81), we obtain _E(Θ(s;_ )) _E(ΘL,M_ (s)) _C(S,_ ini, ini ) _ZΘ(s)(1; x)_ _ZΘL,M_ (s)(L; x) _._ (128) _|_ _·_ _−_ _| ≤_ _R_ _L[dis][,][sup]_ _−_ Thus, to prove the theorem, it suffices to prove that _ZΘL,M_ (s)(L; x) _ZΘ(s)(1; x)_ is small. For this _−_ purpose, according to (113), we need to bound the quantity _L_ 1 _M_ _l+1_ 1 _−_ _L_ ∆t,m(s) dt, (129) _M_ _l_ _|_ _|[2]_ _l=0_ _m=1_ Z _L_ X X where ∆t,m(s) = θl,m(s) _θm(s; t). The next part of the proof contains the required bound._ _−_ First, using (3) and (6), we obtain that d ∆t,m(s) _|_ _|[2]_ ds = 2 ∆t,m(s), Ex _µ_ _∂θf_ (ZΘL,M (s)(l; x), θl,m(s))pΘL,M (s)(l; x) _∂θf_ (ZΘ(s)(t; x), θm(s; t))pΘ(s)(t; x) _−_ _∼_ _−_ = 2 ∆t,m(s), Ex _µ_ _∂θf_ (ZΘL,M (s)(l; x), θl,m(s))pΘL,M (s)(l; x) _∂θf_ (ZΘ(s)(t; x), θm(s; t))pΘL,M (s)(l; x) _−_ - _∼_ _−_ (I) | {z 2 ∆t,m(s), Ex _µ_ _∂θf_ (ZΘ(s)(t; x), θm(s; t))pΘL,M (s)(l; x) _∂θf_ (ZΘ(s)(t; x), θm(s; t))pΘ(s)(t; x) _._ _−_ - _∼_ _−_ + (II) (130) | {z } To bound (I), we use (126) to obtain _|(I)| ≤_ _C(S, Rini, Lini[dis][,][sup])Ex∼µ_ _∂θf_ (ZΘL,M (s)(l; x), θl,m(s)) − _∂θf_ (ZΘ(s)(t; x), θm(s; t)) _≤_ _C(S, Rini, L[dis]ini_ _[,][sup])_ Ex∼µ _ZΘL,M_ (s)(l; x) − _ZΘ(s)(t; x)_ + |θl,m(s) − _θm(s; t)|_ _,_ [] (131) where we use Assumption 4.1 (14), (100), (125), and (127) in the second inequality. To bound (II), we use (13), (100), and (127) to obtain _|(II)| ≤_ _C(S, Rini, Lini[dis][,][sup])(|θm(s; t)| + 1)Ex∼µ_ _pΘL,M_ (s)(l; x) − _pΘ(s)(t; x)_ _._ (132) By substituting (132) and (131) into (130), we obtain [] d ∆t,m(s) _|_ _|[2]_ ds _C(S,_ ini, ini ) ∆t,m(s) _≤_ _R_ _L[dis][,][sup]_ _|_ _|[2]_ + C(S, Rini, L[dis]ini _[,][sup])|∆t,m(s)|Ex∼µ_ _ZΘL,M_ (s)(l; x) − _ZΘ(s)(t; x)_ + C(S, Rini, L[dis]ini _[,][sup])|∆t,m(s)|(|θm(s ; t)| + 1)Ex∼µ_ _pΘL,M_ (s)(l; x)[] − _pΘ(s)(t; x)_ ----- Using Hölder’s inequality similar to (107), we obtain _M_ _m=1_ _[|][∆][t,m][(][s][)][|][2]_ ds P d _M[1]_ 1 _≤_ _C(S, Rini, Lini[dis][,][sup])_ _M_ _m=1_ _|∆t,m(s)|[2]!_ X + C(S, Rini, Lini[dis][,][sup])Ex∼µ _pΘL,M_ (s)(t; x) − _pΘ(s)(t; x)_ + C(S, ini, ini )Ex _µ_ _ZΘL,M_ (s)(t; x) _ZΘ(s)(t; x)[2][]_ _R_ _L[dis][,][sup]_ _∼_ _−_ By substituting (113) and (114) into (133), we obtain [2][] (133) ∆t,m(s) dt + [1] _|_ _|[2]_ _L[2]_ _L_ 1 _M_ _[l][+1]L_ _l=0−_ _m=1_ _l_ ∆t,m(s) dt _L_ _|_ _|[2]_ P P dRs _≤_ _C(S, Rini, Lini[dis][,][sup]_ d _M[1]_ _L−1_ _l=0_ X _l+1_ _m=1_ _l+1_ which implies, from Grönwall’s inequality, that _L−1_ _l+1_ _L−1_ _L_ 1 _M_ _L_ 1 _M_ 1 _−_ _L_ 1 _−_ _L_ ∆t,m(s) dt _C(S,_ ini, ini ) ∆t,m(0) dt + [1] _M_ _l=0_ _m=1_ Z _Ll_ _|_ _|[2]_ _≤_ _R_ _L[dis][,][sup]_ _M_ _l=0_ _m=1_ Z _Ll_ _|_ _|[2]_ _L[2]_ ! X X X X (134) We have thus established the bound (129). We also have _L−1_ _l=0_ X _l+1_ _L−1_ _l=0_ X _l+1_ _L_ _l_ _L_ _[θ][m]_ to obtain ∆t,m(0) dt = [1] _|_ _|[2]_ _M_ 0; _[l]_ dt . (135) _θm(0; t)_ _−_ _m=1_ _m=1_ To complete the proof, we use (79) and take M _η_ _≥_ [8][C][3] _L−1_ _M_ _l=0_ _m=1_ X X _l+1_ _L_ ∆t,m(0) dt _|_ _|[2]_ _≤_ _[C]L[2][4]_ 1 _≥_ _−_ _[η]8_ _[.]_ According to (78), when M > [8][C]η [3] [,] P _Lini[dis][,][sup]_ _≤_ _C4_ _≥_ 1 − _[η]8_ _[.]_ (136) By using these expressions to substitute _M1_ _Ll=0−1_ _Mm=1_ _Ll[l][+1]L_ _|∆t,m(0)|[2]_ and Lini[dis][,][sup] into (134), we find that there exists a constant C _[′](C4,_ ini, S) depending on C4, ini, and S such that if _RP_ P R _R_ _M ≥_ [8][C]η [3] _[,]_ _L ≥_ _[C]_ _[′][(][C][4][,][ R]ϵ_ [ini][, S][)] _,_ then we have _L−1_ _M_ _l=0_ _m=1_ X X _l+1_ 1 (137) _≥_ _−_ _[η]4_ _[.]_ ∆t,m(s) dt _ϵ[2]_ _|_ _|[2]_ _≤_ Using (137), (136), and (127) to bound the right hand side of (113), we find that there exists another constant C _[′′](C4,_ ini, S) depending on C4, ini, and S such that if _R_ _R_ _M ≥_ [8][C]η [3] _[,]_ _L ≥_ _[C]_ _[′′][(][C][4][,]ϵ[ R][ini][, S][)]_ _,_ then we have P _ZΘ(s)(1; x)_ _ZΘL,M_ (s)(L; x) _ϵ_ 1 _−_ _≤_ _≥_ _−_ _[η]2_ _[,]_ By using this result and (136) in conjunction with (128), we complete the proof. ----- H PROOF OF GLOBAL CONVERGENCE RESULT Intuitively, if the equation (9) converges to a stationary point, denote by ρ∞, so that ∂sρ∞ = 0, then _δE_ _θ_ _∇_ _δρ_ (θ, t) = 0, _ρ_ (θ, t)-a.e. θ R[k] _,_ a.e. t [0, 1] . _ρ∞(·,·)_ _∞_ _∈_ _∈_ The rest of the analysis shows that E(ρ ) = 0 when this happens. However, it is not direct because _∞_ the condition above only suggests the fact that _[δE]δρ_ _ρ∞(˙,)[˙]_ [is a piecewise constant function. We need] a stronger result that shows this constant has to be zero. This is achieved by Proposition 6.1. To[|] show this proposition, we follow the proof in (Lu et al., 2020) that explores the expressive power of f (x, θ), particularly the universal kernel property of Assumption 4.1. It is this proposition that identifies stationary points with the global minimizer. We should mention that the zero loss was demonstrated by Chizat & Bach (2018) for the 2-layer problem where the stability equates to zero-loss due to convexity. The extension to the multi-layer case is more difficult since convexity is not present. H.1 PROOF OF PROPOSITION 6.1 We first prove a lower bound for pρ in the following lemma. **Lemma H.1 Suppose that ρ ∈C([0, 1]; P** [2]) and that pρ is a solution to (11). Denoting 1 _Lρ =_ 0 R[k][ |][θ][|][2][dρ][(][θ, t][)][,] Z Z _then for any t ∈_ [0, 1] we have that Ex _µ_ _pρ(t; x)_ _Q(_ _ρ)E(ρ),_ (138) _∼_ _|_ _|[2][]_ _≥_ _L_ _where Q : R+ →_ R+ is a decreasing function. **Proof Recall that the initial condition for pρ in (11) is:** _pρ(1; x) = (g(Zρ(1; x))_ _y(x))_ _g(Zρ(1; x)),_ _−_ _∇_ so from Assumption 4.1, we have 2 Ex _µ_ _pρ(1; x)_ inf _E(ρ) ._ _∼_ _|_ _|[2][]_ _≥_ _x_ R[d][ |∇][g][(][x][)][|] _∈_ Further, since the equation is linear, we have _∂p[⊤]ρ_ _∂t_ = −p[⊤]ρ R[k][ ∂][z][f] [(][Z][ρ][, θ][)][dρ][(][θ, t][)][ .] According to equation (13) in Assumption 4.1, we obtain R[k][ ∂][z][f] [(][Z][ρ][(][t][;][ x][)][, θ][) d][ρ][1][(][θ, t][)] _[≤]_ _[C][(][Z][ρ][(][t][;][ x][))]_ ZR[k] [(][|][θ][|][2][ + 1) d][ρ][(][θ, t][)] _C(_ _ρ)_ _≤_ _L_ R[k] [(][|][θ][|][2][ + 1) d][ρ][1][(][θ, t][)][,] Z where we use (18) in the second inequality. By combining the last two bounds in the usual way, we obtain d _pρ(t; x)_ _|_ _|[2]_ 2C( _ρ)_ _pρ(t; x)_ _,_ dt _≤_ _L_ _|_ _|[2]_ ZR[k] [(][|][θ][|][2][ + 1)][dρ][(][θ, t][)] By solving the equation, we have 1 _pρ(t; x)_ _pρ(1; x)_ exp 2C( _ρ)_ _|_ _|[2]_ _≥|_ _|[2]_ _−_ _L_ _t_ Z _C(_ _ρ)_ _pρ(1; x)_ _._ _≥_ _L_ _|_ _|[2]_ R[k] [(][|][θ][|][2][ + 1)][dρ][(][θ, t][)] ----- The proof is finalized by taking expectation on both sides, and note that monotonicity comes from the format of the exponential term. We are now ready to prove Proposition 6.1. **Proof [Proof of Proposition 6.1] Denote** 1 _Lρ =_ 0 R[k][ |][θ][|][2][ d][ρ][(][θ, t][) d][t .] Z Z According to existence and uniqueness of the solution to (7), for any t ∈ [0, 1], we can construct a map Zt such that _Zt(x) = Zρ (t; x) ._ Since the trajectory can be computed backwards in time, _t_ is well defined. Further, we denote _Z_ _[−][1]_ _µ[∗]t_ [= (][Z][t][)][♯][µ][ to be the pushforward of][ µ][ under map][ Z][t] [and let] _p[∗](t; x) = pρ_ _t;_ _t_ (x) _._ _Z_ _[−][1]_ By Assumption 4.1 and classical ODE theory, Zt and _Zt[−][1]_ are both continuous maps in _x, and so are_ _pρ(t; x) and p[∗](t; x). With the change of variables, we have for all t_ [0, 1] that _∈_ _δE(ρ)_ (θ, t) = _ρ_ [(][t][;][ x][)][f] [(][Z][t][(][x][)][, θ][) d][µ][ =] _t_ _[.]_ (139) _δρ_ R[d][ p][⊤] R[d] [(][p][∗][(][t][;][ x][))][⊤][f] [(][x, θ][) d][µ][∗] Z Z For a fixed t0 [0, 1], we have boundedness of the Jacobian from Lemma C.1, meaning that _∈_ dµ[∗]t0 [(][Z]t[−][1](x)) sup _C(_ _ρ)._ _x_ supp(µ) dµ(x) _≤_ _L_ _∈_ 2 As a consequence, µ[∗]t0 [(][x][)][ has a compact support since][ µ][(][x][)][ does. We denote the size of the support] by R[∗], defined to be a real number such that supp _µ[∗]t0_ [(][x][)] _⊂{x : |x| < R[∗]}._ _δE(ρ)_ We now derive a general formula for _δρ_ [(][θ, t][) d] _[ν][. Recalling (139), we have]_ _δE(ρ)_ R (θ, t0) dν(θ) = dµ[∗]t0 [(][x][)] ZR[k] _δρ_ ZR[d] [(][p][∗][(][t][0][;][ x][))][⊤] ZR[k][ f] [(][x, θ][) d][ν][(][θ][)] = dµt0 (x) (140) ZR[d] [(][p][∗][(][t][0][;][ x][))][⊤] ZR[k][ f] [(][x, θ][) d][ν][(][θ][) +][ p][∗][(][x, t][0][)] _−_ _t0_ [(][x][)][ .] R[d] [(][p][∗][(][t][0][;][ x][))][⊤][p][∗][(][x, t][0][) d][µ][∗] Z Noticing that according to Lemma H.1, if E(ρ) ̸= 0, the second term above is strictly negative (less than _Q(_ _ρ)E(ρ)), the goal then is to find ν for which_ dν = 0 that makes the first term small, so _−_ _L_ that the right-hand side in (140) is negative. Defining the continuous function h to be R _h(x) = p[∗]_ (t0; x) + R[k][ f] [(][x, θ][) d][ρ][(][θ, t][0][)][,] Z then according to Assumption 4.1, for arbitrarily small ϵ, there is a ˆν so that _νˆ = 0 and_ R ZR[k][ f] [(][x, θ][) dˆ]ν(θ) _L[∞]|x|<R[∗]_ _≤_ _ϵ ._ Setting ν = ρ _νˆ and substituting into the first term of (140), we obtain_ _−_ _[h][(][x][)][ −]_ dµt0 (x) ZR[d] [(][p][∗][(][t][0][;][ x][))][⊤] ZR[k][ f] [(][x, θ][) d][ν][(][θ][) +][ p][∗][(][x, t][0][)] _≤_ _ν(θ)_ [d][µ]t[∗]0 [(][x][)] R[d][ |][p][∗][(][t][0][;][ x][)][|] R[k][ f] [(][x, θ][) dˆ] Z Z _≤∥p[∗](t0; x)∥L∞|x|<R[h][(][∗][x][)][ −]_ ZR[k][ f] [(][x, θ][) dˆ]ν(θ) _L[∞]|x|<R[∗]_ _[h][(][x][)][ −]_ (141) ----- By choosing ϵ small enough that (141) is less than 12 _[Q][(][L][ρ][)][E][(][ρ][)][, we have from][ (140)]_ _δE(ρ)_ _δρ_ [(][θ, t][0][) d][ν][(][θ][)][ <][ 0][, completing the proof.] R H.2 2-HOMOGENEOUS CASE: PROOF OF THEOREM 6.1 We first give an example of 2-homogeneous activation function that satisfy Assumption 4.1, and 6.1. **Remark H.1 A function that satisfies Assumption 4.1 and the 2-homogeneous property of Assump-** _tion 6.1 is f_ (x, θ) = f (x, θ[1], θ[2]) = σ(θ[1]x + θ[2]) exp(−|x|[2]), where θ[1] ∈ R[d][×][d], θ[2] ∈ R[d], _and σ(x) = | max{x, 0}|[2]_ _applied componentwise._ Before proving the Theorem 6.1, we first introduce the following lemma, which shows that the separation property is preserved in the training process. Our proof of this result is adapted from (Chizat & Bach, 2018). **Lemma H.2 Let Assumptions 4.1 and 4.2 hold, and suppose that ρini(θ, t) is admissible with compact** _support. Let ρ(θ, t, s)_ ([0, ); ([0, 1]; )) solve (9). If there exists t0 [0, 1], so that the _initial condition ρini(θ, t ∈C0) separates the spheres ∞_ _C_ _P_ [2] raS[k][−][1] _and rbS[k][−][1]_ _for some 0 ∈ < ra < rb, then for_ _any s0 ∈_ [0, ∞), ρ(θ, t0, s0) separates the spheres ra[′] [S][k][−][1][ and][ r]b[′] [S][k][−][1][ for some][ 0][ < r]a[′] _[< r]b[′]_ _[.]_ **Proof For every fixed 0 < s0 < S < ∞, we note that the particle representation θρ(s; t0) of** _ρ(θ, t0, s) updates the following equation:_ dθρ(s; t0) _δE(ρ(s))_ = _θ_ (θρ(s; t0), t0), _s_ (0, S) ds _−∇_ _δρ_ _∈_ (142) _θρ(0; t0) = θ ._ Define the map _s(θ) to be the solution map that solves the equation above for given initial condition_ _P_ _θ up to time s. Our proof amounts to showing that this map preserves the separation property._ According to (Chizat & Bach, 2018, Proposition C.11), we need only show that the inverse map of _s(θ) is stable near 0 for any fixed 0 < s < S. That is, for any ϵ > 0, we need to identify η > 0_ _P_ such that _s_ [(][θ][)][ ⊂B][ϵ] [(0)][,] _θ_ _η (0),_ (143) _P_ _[−][1]_ _∀_ _∈B_ where _η(0) is the k-dimensional ball around original 0 with radius η._ _B_ Since f is 2-homogeneous in θ, we have that _∂θf_ (z, 0) = 0 for all z. Thus, from (10), _|_ _|_ _δE(ρ(s))_ (0, t0) [= 0][.] _δρ_ Using estimate (49) from Lemma C.4, we obtain _[∇][θ]_ _δE(ρ(s))_ (θ, t0) _S_ [)][|][θ][|][,] _δρ_ _[≤]_ _[C][(][L][sup]_ where LS[sup] = sup0≤s≤S,t∈[0,1][∇]R[θ][k][ |][θ][|][2][ d][ρ][(][θ, t, s][) d][t][. This upper bound on the velocity implies in] particular that R _|Ps[−][1][(][θ][)][| ≤|][θ][|][ exp(][C][(][L]S[sup][)][s][)][,]_ which establishes (143) when we choose η to satisfy η < ϵ exp(−C(LS[sup][)][s][)][, concluding the proof.] We are now ready to prove Theorem 6.1. **Proof [Proof of Theorem 6.1] Since ρ(θ, t, s) converges to ρ** (θ, t) in ([0, 1]; ), we have for any _∞_ _C_ _P_ [2] _t0 that_ sup (144) _s≥0_ ZR[k][ |][θ][|][2][ d][ρ][(][θ, t][0][, s][)][ <][ ∞] _[.]_ According to Proposition 6.1, it suffices to prove that _δE(ρ_ ) _∞_ (θ, t0) = 0, _θ_ R[k] _._ (145) _δρ_ _∀_ _∈_ ----- We use a contradiction argument: We will assume that (145) is not satisfied and show that R[k][ |][θ][|][2][ d][ρ][(][θ, t][0][, s][)][ blows up to infinity as][ s][ →∞][, contradicting][ (144)][. In particular, we will] use homogeneity to construct a set in which the second moment blows up. R Define the functions h and hs as follows: _∞_ _h∞(θ) =_ _[δE]δρ[(][ρ][∞][)]_ (θ, t0), _hs(θ) =_ _[δE][(]δρ[ρ][(][s][))]_ (θ, t0) . Recall from (10) that _δE(ρ)_ (θ, t0) = Eµ _p[⊤]ρ_ [(][t][0][, x][)][f] [(][Z][(][t][0][;][ x][)][, θ][)] _._ (146) _δρ_ Since (145) is not satisfied, there exists a θ[∗] such that _[δE]δρ[(][ρ][∞][)]_ (θ[∗], t0) = 0. From (146), by Hölder’s _̸_ inequality, _δE(ρ_ ) 0 < _∞_ (θ[∗], t0) Ex _µ_ _pρ_ (t0; x) Ex _µ_ _f_ (Z(t0; x), θ[∗]) _,_ _δρ_ _∼_ _|_ _∞_ _|[2][][1][/][2][ ]_ _∼_ _|_ _|[2][][1][/][2]_ _[≤]_ which implies Ex _µ_ _pρ_ (t0; x) _> 0 ._ _∼_ _|_ _∞_ _|[2][]_ Then, Since f is a universal kernel according to Assumption 4.1, we can find ν such that _f_ (Z(t0; x), θ) dν approximates −pρ∞ (t0, x). leading to R _δE(ρ_ ) _δρ∞_ (θ, t0) dν(θ) < − 2[1] [E][x][∼][µ] _|pρ∞_ (t0; x)|[2][] _< 0 ._ R[k][ h][∞][(][θ][) d][ν][(][θ][) =] R[k] Z Z As a consequence, there exists at least one point θ0 R[k] such that h (θ0) < 0. Since f is 2-homogeneous, by (10), h is also 2-homogeneous, so that ∈ _∞_ _h∞(θ0/|θ0|) < 0 ._ Because of continuity, there is a small neighborhood around θ0/|θ0| in S[k][−][1] where h is strictly negative. Moreover, since h is Sard-type regular, there exist ϵ > 0 and η > 0 such that _A =_ _θ ∈_ S[k][−][1] _h∞|Sk−1_ _θ_ _< −ϵ_ ≠ _∅_ _,_ ∇θ[h][∞]n[|]e[S][k][−][1] _θ_ _· nθ_ _[> η,]e∀_ _θ[e] ∈_ _∂A,o_ where h∞|Sk−1 is the confinement of e _h∞eon S[k]e[−][1], and nθ_ [is the outer normal vector to][ ∂A][.] This statement of h∞ can be extended to hs for sufficiently largere _s as well. Using estimate (48) from_ Lemma C.4, we obtain that _hs(θ)_ _h_ (θ) in loc[(][R][k][)][,] as s _,_ _→_ _∞_ _C[1]_ _→∞_ meaning there exists S > 0 such that for any s ≥ _S, we have_ _hs|Sk−1_ _θ_ _< −ϵ/2,_ _∀_ _θ[e] ∈_ _A,_ ∇θ[h][s][|][S][k][−]e[1] _θ_ _· nθ_ _[>][ 1]2_ _[η,]_ _∀_ _θ[e] ∈_ _∂A ._ e e Extending this patch on the unit sphere to the whole domain, we define the cone: e _A =_ _θ ∈_ R[k] _|θ| > 0, θ/|θ| ∈_ _A_ _._ Using the 2-homogeneous property of hs, we have for s _S that_ _≥_ _hs(θ) < −_ _[ϵ][|][θ]2[|][2]_ _[,]_ _∀θ ∈A,_ (147) ( _θhs(θ)_ _⃗nθ > 0,_ _θ_ _∂_ _θ_ _> 0_ _,_ _∇_ _·_ _∀_ _∈_ _A ∩{|_ _|_ _}_ where ⃗nθ is the outer normal vector to ∂A. ----- We now define a new system that follows the gradient flow corresponding to ρs. Denote by _θ (s; α)_ the solution to the following ODE: dθ[b] (s; α) _δE(ρ(s))_ [b] = _θ_ _θ (s; α), t0_ = _θhs_ _θ (s; α)_ _,_ _s > S_ ds _−∇_ _δρ_ _−∇_ (148) _θ (S; α) = α,_ b b where α R[k]. According to (147), when θ _∂_ _θ_ _> 0_, _θhs(θ) points outwards, away from_ _∈_ b _∈_ _A ∩{|_ _|_ _}_ _∇_ _A. We also notice that_ _θ_ _s;[⃗]0_ = _[⃗]0. Thus if the ODE starts with from some α ∈A, then for any_ _s_ _S, the particle stays within_ , that is, _≥_ _A_ [b] _θ (s; α) ∈A ._ (149) As a consequence, we have 2 b d _θ (s; α)_ 2 = 2 _θ (s; α),_ _θhs_ _θ (s; α)_ = 4hs _θ (s; α)_ _> 2ϵ_ _θ (s; α)_ _,_ (150) ds _−_ _∇_ _−_ where we use the 2-homogeneous property of[b] D _hEs in the second equality and_ (147) in the final b b b [b] inequality. According to Lemma H.2, there exist two spheres separated by ρ(θ, t0, S), meaning that there exist _β > 0 and γ > 0 relatively small (for example, with β < ra[′]_ [) such that] (151) _c_ [d][ρ][(][θ, t][0][, S][)][ > γ .] ZA∩(Bβ([⃗]0)) By tracing the trajectory of (148), we have R[k][ 1]θ[b](s;α)∈A∩(Bβ([⃗]0))c dρ(α, t0, S) _s_ _S,_ _A∩(Bβ([⃗]0))c_ [d][ρ][(][α, t][0][, S][)][ > γ,] _≥_ _c_ [d][ρ][(][θ, t][0][, s][) =] _A∩(Bβ([⃗]0))_ d _θ(s;α)_ 2 where in the first inequality we also use _|[b]_ ds _|_ 0 when α . Further, we have _≥_ _∈A_ 2 d _A∩(Bβ([⃗]0))c 1θ(s;α)∈A∩(Bβ([⃗]0))c_ _θ (s; α)_ dρ(α, t0, S) R b ds 2 [b] = d _A∩(Bβ([⃗]0))c_ _θ (s; α)_ dρ(α, t0, S) R ds [b] 2 2ϵ _c_ _θ (s; α)_ dρ(α, t0, S) _≥_ ZA∩(Bβ([⃗]0)) 2ϵγβ[2] [b] _≥_ where we use (150) in the second inequality and (151) in the final inequality. It follows that 2 _slim→∞_ ( _β([⃗]0))c_ **[1]θ[b](s;α)∈A∩(Bβ([⃗]0))c** _θ (s; α)_ dρ(α, t0, S) = ∞ _._ ZA∩ _B_ It follows from this result that [b] lim _s→∞_ R[k][ |][θ][|][2][ d][ρ][(][θ, t][0][, s][) =][ ∞] _[,]_ Z contradicting (144). Therefore, we must have _δE(ρ_ ) _∞_ (θ, t0) = 0, _θ_ R[k] _,_ _δρ_ _∀_ _∈_ which completes the proof. ----- H.3 PARTIALLY 1-HOMOGENEOUS CASE: PROOF OF THEOREM 6.2 We first give an example of partially 1-homogeneous activation function that satisfy Assumption 4.1, and 6.2. **Remark H.2 The following function satisfies Assumptions 4.1 and 6.2: Let θ = (θ[1], θ[2], θ[3])** _with θ θ[1][2]σ2∈(_ _θ[2]R)[d], θ[2]θ[3]σ∈2(_ _θ[3]R[d])[×][d], θ[3]_ _∈_ R[d]. _Define f_ (x, θ) = _f_ (x, θ[1], θ[2], θ[3]) = _θ[1]σ_ _θ[2]|_ _|_ _x +_ _θ[3]|_ _|_ _, where σ(x) is a regularized ReLU activation function, and_ _|_ _|_ _|_ _|_ _σway (of many) to define a regularized ReLU activation function is2, σ2(x)/x : R+ →_ R+ are bounded, Lipschitz, and differentiable with Lipschitz differential. One _σ(x) = (x + η)[2]/(4η)1x_ [ _η,η] +_ _∈_ _−_ _x1x∈(η,∞), for some small η._ As in the previous theorem, we prove a lemma, adapted from (Chizat & Bach, 2018, Lemma C.13), that asserts preservation of the separation property. **Lemma H.3 Let Assumptions 4.1 and 4.2 with k1 = 1. Suppose that ρini(θ, t) is admissible** _and suppθ(ρini(θ, t))_ _θ_ _θ[1]_ _R_ _with some R > 0 for all t_ [0, 1]. Let ρ(θ, t, s) _⊂{_ _||_ _| ≤_ _}_ _∈_ _∈_ _C([0, ∞); C([0, 1]; P_ [2])) solve (9). Suppose in addition that - f satisfies the partial 1-homogeneous condition (see Assumption 6.2), - The initial conditions satisfy the separation condition, that is, there exists t0 [0, 1] such _that ρini(θ[1], θ[2], t0) separates the spheres {−r0} × R[k][−][1]_ _and {r0} × R[k] ∈[−][1]_ _for some_ _r0 > 0._ _Then for any s0 ∈_ [0, ∞), ρ(θ[1], θ[2], t0, s0) separates {−r[′]} × R[k][−][1] _and {r[′]} × R[k][−][1]_ _for some_ _r[′]_ _> 0._ **Proof Note that the particle representation θρ(s; t0) of ρ(θ, s, t0) satisfies** dθρd(ss;t0) = −∇θ _δE(δρρ(s))_ (θρ(s; t0), t0), (152) (θρ(0; t0) = θ . Define a continuous map P : R[k] _× [0, ∞) →_ R[k] as the solution to (152), that is, P(θ, s) is the solution to (152) with initial condition θρ(0; t0) = θ, where t0 is fixed. Define a diffeomorphism _ψ : R × R[k][−][1]_ _→_ R × B1 (0) as follows: _ψ(θ[1], θ[2]) =_ _θ[1],_ _θ[2]/|θ[2]|_ _· tanh_ _|θ[2]|_ _,_ _θ[2] ̸= 0_ (θ[1], 0), _θ[2] = 0,_ wheremap keeps the first component of θ[1] ∈ R is the first component of θ[1] intact and shrinks θ and θ[2] ∈ R[k][−][1] θcontains the remaining components. This[2] to push its amplitude below 1. This diffeomorphism preserves the connection/separation property. Define the continuous map Q as follows: _Q(θ, s) = ψ ◦P(ψ[−][1](θ), s) : R × B1 (0) × [0, ∞) →_ R × B1 (0) . Since ψ preserves the connection property, the lemma is proved if we can show ψ (supp(ρini), s) _◦P_ separates {−r[′]} × B1 (0) and {r[′]} × B1 (0) for some r[′] _> 0. Since ψ ◦P(supp(ρini), s) =_ _Q(ψ(supp(ρini)), s), we trace the evolution of Q(θ, s) for θ ∈_ R × B1(0). According to (Chizat & Bach, 2018, Proposition C.14), this translates to showing Q(θ, s) can be continuously extended to R × B1 (0) × [0, S] → R × B1 (0), with the extension satisfying _Q(θ, s) ∈_ R × ∂B1 _⃗0_ _,_ _∀θ ∈_ R × ∂B1 _⃗0_ _,_ _s ∈_ [0, ∞), (153) meaning that the extension Q(·, s) maps R × ∂B1([⃗]0) to itself for all s ∈ [0, ∞). ----- Denoting _s(θ) =_ (θ, s), we consider the velocity field of this flow (similar to the proof of (Chizat _Q_ _Q_ & Bach, 2018, Lemma C.13)): d _s_ d _s_ _ψ[−][1]_ _Q_ _θψ_ _s_ _ψ[−][1]_ (θ) _P_ _◦_ ds [=] _∇_ _P_ _◦_ ds _δE(ρ(s))_ = _θψ_ _s_ _ψ[−][1]_ (θ) _θ_ _s_ _ψ[−][1]_ (θ), t0 _−_ _∇_ _P_ _◦_ _∇_ _δρ_ _P_ _◦_ []δE(ρ(s)) [] = _θψ_ _ψ[−][1](_ _s)_ _θ_ _ψ[−][1](_ _s), t0_ = V ( _s, s) ._ _−_ _∇_ _Q_ _∇_ _δρ_ _Q_ _Q_ [] [] From the fourth condition of Theorem 6.2, the velocity field V (θ, s) can be continuously extended to R × ∂B1 (0) as follows: _V (θ, s) = V (θ[1], θ[2], s) =_ _−_ _∇θψ_ _ψ[−][1](θ)_ _∇θ_ _δE(δρρ(s))_ _ψ[−][1](θ), t0_ _,_ _|θ[2]| < 1_ ( _− H∞,ρ( s)(θ[2]), 0 [],_ [] _|θ[2]| = 1,_ where H∞,ρ(s) is the limit of _[δE] [(]δρ[ρ][(][s][))]_ 1, rθ[2], t0 as _r →∞. Within this velocity field, Qs can be_ continuously extended to R 1 (0) [0, ) R 1 (0) with the extension satisfying (153). _× B_ _×_ _∞_ _→_ _× B_ This completes the proof. We are now ready to prove Theorem 6.2. **Proof [Proof of Theorem 6.2] The technique of proof is similar to the 2-homogeneous case. Since** _ρ(θ, t, s) converges to ρ_ (θ, t) in ([0, 1]; ), we have _∞_ _C_ _P_ [2] sup (154) _s≥0_ ZR[k][ |][θ][|][2][dρ][(][θ, t][0][, s][)][ <][ ∞] _[.]_ According to Proposition 6.1, it suffices to prove that _δE(ρ_ ) _δE(ρ_ ) _∞_ (θ, t0) = _[δE][(][ρ][∞][)]_ (θ[1], θ[2], t0) = θ[1] _∞_ (1, θ[2], t0) = 0, _θ_ R[k] _._ (155) _δρ_ _δρ_ _δρ_ _∀_ _∈_ In the following, we will show that R[k][ |][θ][|][2][dρ][(][θ, t][0][, s][)][ blows up as][ s][ →∞] [if][ (155)][ fails to hold, in] contradiction to (154). R Denote _h∞(θ[2]) =_ _[δE]δρ[(][ρ][∞][)]_ (1, θ[2], t0), _hs(θ[2]) =_ _[δE][(]δρ[ρ][(][s][))]_ (1, θ[2], t0) . (156) Then if (155) is not satisfied, without loss of generality, we can assume that there exists θ[2] such that _h∞(θ[2]) < 0. Since h∞_ satisfies Sard-type regularity, there exist ϵ > 0 and η > 0 such that _A =_ _θ[2] ∈_ R[k][−][1] _h∞_ _θ[2]_ _< −ϵ_ ≠ _∅;_ _∇θ[2]_ _h∞(θ[2]) · ⃗nθ[2] > η,_ _∀_ _θ[2] ∈_ _∂A,_ where nθ[2] is the outer normal vector on _∂A._ Using the definition of _[δE]δρ_ [as in (10), we have] _δE(ρ(s))_ _δE(ρ_ ) _δρ_ (1, θ[2], t) −∇θ[2] _δρ∞_ (1, θ[2], t) =[∇] E[θ][[2]]x∼µ _∂θ[2]_ _f[ˆ](Zρ(s)(t; x), θ[2])pρ(s)(t; x) −_ _∂θ[2]_ _f[ˆ](Zρ∞_ (t; x), θ[2])pρ∞ (t; x) _≤_ Ex∼µ _∂θ[2]_ _f[ˆ](Zρ(s)(t; x), θ[2]) −_ _∂θ[2]_ _f[ˆ](Zρ∞_ (t; x), θ[2]) _|pρ(s)(t; x)|_ + Ex∼µ _∂θ[2]_ _f[ˆ](Zρ∞_ (t; x), θ[2]) _pρ(s)(t; x) −_ _pρ∞_ (t; x) _C_ Ex _µ_ _Zρ(s)(t; x)_ _Zρ_ (t; x) + Ex _µ_ _pρ(s)(t; x)_ _pρ_ (t; x) _≤_ _∼_ _−_ _∞_ _∼_ _−_ _∞_ _≤_ _Cd 1(ρ(s) , ρ∞),_ [] [] ----- where we have used the Lipschitz continuity of f and its derivatives as in Assumption 6.2 and the estimates (18), (31), and (47). We thus have _hs(θ[2])_ _h_ (θ[2]) in (R[k][−][1]), as s _._ (157) _→_ _∞_ _C[1]_ _→∞_ As a consequence, there exists S > 0 such that for any s ≥ _S_ _hs_ _θ[2]_ _< −ϵ/2,_ _∀_ _θ[2] ∈_ _A,_ (158) ∇θ [2] _hs(θ[2]) · ⃗nθ[2] >_ [1]2 _[η,]_ _∀_ _θ[2] ∈_ _∂A ._ Extending this set to the whole space, we define = (θ[1], θ[2]) (0, ) _A_ _._ _A_ _∈_ _∞_ _×_ Sincehs, we have ∂A = (θ[1], θ[2]) ∈ (0, ∞) × ∂A _∪{θ[1] = 0, θ[2] ∈_ _A}, from (158) and the definition of_ _δE(ρ(s))_ _∇θ_ _δρ_ (θ, t0) · ⃗nθ = θ[1] _∇θ[2]_ _hs(θ[2]) · ⃗nθ[2]_ _> 0,_ _∀θ ∈_ (0, ∞) × ∂A, (159) where ⃗nθ is the outer normal direction on ∂A, and ⃗nθ[2] is the outer normal vector on ∂A. When _θ ∈{θ[1] = 0, θ[2] ∈_ _A},_ _δE(ρ(s))_ _δE(ρ(s))_ _∇θ_ _δρ_ (θ, t0) 1 = hs(θ[2]) < 0, _∇θ_ _δρ_ (θ, t0) _i_ = 0, _i = 2, . . ., k,_ (160) where [ ]i means the i-component of the vector. This implies that _θ_ _δE(δρρ(s))_ (θ, t0) points strictly _·_ _∇_ downward when θ ∈{θ[1] = 0, θ[2] ∈ _A}._ As in the 2-homogeneous case, we consider the gradient flow corresponding to ρs. Denote by _θ (s; α)_ the solution to the following ODE: dθ(s;α) _δE(ρ(s))_ [b] ds = −∇θ _δρ_ _θ (s; α), t0_ = −∇θ _θ[1]hs_ _θ[2]_ _θ (s; α)_ _,_ _s > S_ (161) b (θ (S; α) = α, [] b b whereb α ∈ R[k]. Since the minus gradient is pointing inward to A, as stated in (159) and (160), _θ (s; α)_ stays in A if _θ (s[′]; α) ∈A for some s[′]_ _∈_ [S, s]. Moreover, using (161), if _θ (s; α) ∈A, we have_ [b] [b] d|θ[b][1] (s; α) |[2] = 2θ[b][1] (s; α) hs _θ[2] (s; α)_ _> ϵθ[b][1] ([b]s; α),_ (162) ds _−_ where the last inequality uses (158). b Similar to (Chizat & Bach, 2018, Proposition C.4), we claim that there exists S1 _S, β > 0, and_ _γ > 0 such that (see detailed proof in Appendix H.3.1)_ _≥_ dρ(θ, t0, S1) > γ . (163) Z(β,∞)×A 2 R[k][ 1]θ[b](S1;α)∈(β,∞)×A _θ[1] (s; α)_ dρ(α, t0, S) ds [b] Then Since lim _s→∞_ R[k][ 1]θ[b](S1;α)∈(β,∞)×Aθ[b][1] (s; α) dρ(α, t0, S) _θ(S1;α)_ (β, ) _A_ [d][ρ][(][α, t][0][, S][)] R[k][ 1][b] _∈_ _∞_ _×_ Z dρ(θ, t0, S1) _ϵβγ ._ Z(β,∞)×A _≥_ _≥_ _ϵ_ Z _≥_ _ϵβ_ = ϵβ (164) _θ[1]_ dρ(θ, t0, s) lim (β, ) _A_ _|_ _|[2]_ _≥_ _s→∞_ _∞_ _×_ _θ(S1;α)_ (β, ) _A_ _θ[1] (s; α)_ dρ(α, t0, S) = _,_ R[k][ 1][b] _∈_ _∞_ _×_ _∞_ [b] ----- we finally obtain, using (164), that lim _θ[1]_ dρ(θ, t0, s) = _._ _s→∞_ R[k][ |][θ][|][2][ d][ρ][(][θ, t][0][, s][)][ ≥] _s[lim]→∞_ (β, ) _A_ _|_ _|[2]_ _∞_ Z Z _∞_ _×_ This limit contradicts (154), implying that (155) must hold, as claimed. H.3.1 CLAIM IN THE PROOF OF THEOREM 6.2 In this section, we prove the statement in (163), meaning that we need to find S1 _S, β > 0, and_ _γ > 0 such that_ _≥_ dρ(θ, t0, S1) > γ . (165) Z(β,∞)×A Supposing that [d][ρ][(][θ, t][0][, S][)][ >][ 0][, then by making][ β][ and][ γ][ small enough,][ (165)][ is satisfied] _A_ naturally. R If [d][ρ][(][θ, t][0][, S][) = 0][, then it suffices to show that there exists][ S][1][ > S][ such that] _A_ dρ(θ, t0, S1) > 0 . (166) Z Define hs(θ[2]) and h∞(θ[2]) as in (156). Because of the fourth condition in Theorem 6.2, there exists a function h[′](θ[e]) on S[k][−][2][] such that _C[1][ ]_ _h_ (rθ[e]) _r→∞_ _h[′](θ[e]),_ in (S[k][−][2] _._ _∞_ _−−−→_ _C[1]_ Combining this with (157), there exists h[∗] _> ϵ/2 such that_ _hs_ _L[∞]A_ we can find θ[2][∗] _∥_ _∥_ _[≤]_ _[h][∗][. Further, for any][ ξ >][ 0][,]_ _[∈]_ _[A][ and][ S][′][ large enough such that]_ _|∇θ[2][∗]_ _[h][s][(][θ][2][∗]_ [)][|][ < ξ,] _∀s ≥_ _S[′]_ _._ (167) According to Lemma H.3, there exists rS′ > 0 such that ρ(θ[1], θ[2], t0, S[′]) separates _rS′_ _{−_ _} ×_ R[k][−][1] and {rS′ _} × R[k][−][1]. Considering the set [−rS′_ _, rS′_ ] × {θ[2][∗] _[}][, it must intersect the support of]_ _ρ(θ[1], θ[2], t0, S[′]) due to the separation property. Thus, any open set that contains [−rS′_ _, rS′_ ]×{θ[2][∗] _[}]_ must have a positive measure in ρ(θ[1], θ[2], t0, S[′]). Because [d][ρ][(][θ, t][0][, S][′][) = 0][ and][ (][−][r][S][′][ −] _A_ 1, ) _A is a open set that covers [_ _rS[′]_ _, rS[′]_ ] _θ[2][∗]_ _[}][, there exists a open set][ U][ ⊂]_ [(][−][r][S][′][ −] [1][,][ 0]] _[×]_ _[A]_ _∞_ _×_ _−_ _×{_ R such that dρ(θ[1], θ[2], t0, S[′]) > 0 . _U_ Z Thus, we can find a point 0 < r[∗] _rS′ + 1 and an arbitrary small σ > 0 such that_ _≤_ _Bσ(−r[∗], θ[2][∗]_ [)][ ⊂] [(][−][r][S][′][ −] [1][ −] _[σ, σ][)][ ×][ A,]_ and Recalling the system (161), we claim the following: dρ(θ, t0, S[′]) > 0 . _Bσ(−r[∗],θ[2][∗]_ [)] _When ξ, σ are small enough, there exists S1 > S[′]_ _such that_ _θ (S1; α) ∈A for any_ _α ∈Bσ(−r[∗], θ[2][∗]_ [)][.] [b] If this claim is true, then dρ(θ, t0, S[′]) > 0 . _Bσ(−r[∗],θ[2][∗]_ [)] dρ(θ, t0, S1) _≥_ ZA which proves (166) and the lemma. ----- Now, we prove the claim. Because f satisfies Assumption 6.2 and the second moment of ρ is uniformly bounded in s, for all s > 0, we have _δE(ρ(s))_ (1, θ[2], t0) (1, θ[2][′] _[, t][0][)]_ [2][|][,] _δρ_ _−_ _[δE][(]δρ[ρ][(][s][))]_ _[≤]_ _[L][|][θ][[2]][ −]_ _[θ][′]_ (168) _δE(ρ(s))_ _δE(ρ(s))_ (1, θ[2], t0) _θ_ (1, θ[2][′] _[, t][0][)]_ [2][|][,] _δρ_ _−∇_ _δρ_ _[≤]_ _[L][|][θ][[2]][ −]_ _[θ][′]_ for some constant L. According to (161), we have _[∇][θ]_ dθ[b][1](s; α) ds = −hs _θ[2](s; α)_ 2 _,_ _s_ _S[′]_ (169) d _θ[2](s; α) −_ _θ[2][∗]_ b _≥_ ds _≤_ 2 _θ[2](s; α) −_ _θ[2][∗]_ _θ[1](s; α)_ _∇θ[2]_ _hs_ _θ[2](s; α)_ where [b] [b] [b] b _r[∗]_ _σ_ _θ[1](S[′]; α)_ _σ,_ and _θ[2](S[′]; α)_ _θ[2][∗]_ _σ ._ (170) _−_ _−_ _≤_ [b] _≤_ _−_ _≤_ To prove the claim, it suffices to show that there exists S1 > S[′] such that [b] We first show that _θ[1] increases and the right hand-side ofθb[1] (S1; α) > 1_ and _θb[2] (S (169)1; α) ∈ is bounded. SinceA ._ _A is a open set,(171)_ there exists an arbitrary small Σ > 0 such that BΣ(θ[2][∗] [)][ ⊂] _[A][. We first choose][ σ <][ min][{][Σ][,][ 2][}][. When]_ [b] _θ[1](s; α)_ _≤_ [2][r][S][′]ϵ[ + 2] _h[∗]_ + 2, _θ[2](s; α) −_ _θ[2][∗]_ _≤_ Σ, (172) we have from (158), (167), and (168) that [b] [b] dθ[b][1](s; α) dθ[b][1](s; α) ds = −hs _θ[2](s; α)_ _< h[∗],_ ds = −hs _θ[2](s; α)_ _> ϵ/2_ (173) and b 2 b d _θ[2](s; α)_ _θ[2][∗]_ _−_ ds [b] 2rS′ + 2 (174) _≤_ 2 _ϵ_ _h[∗]_ + 2 _θ[2](s; α) −_ _θ[2][∗]_ _L_ _θ[2](s; α) −_ _θ[2][∗]_ + ξ 2rS′ + 2 2 2rS′ + 2 _≤_ 2L _ϵ_ _h[∗]_ + 2 [b]θ[2](s; α) − _θ[2][∗]_ + 2[b] _ϵ_ _h[∗]_ + 2 Σξ . When s = S[′] and α ∈Bσ(−r[∗], θ[2][∗] [)][, we have from (170) that][b] _θ[1](S[′]; α)_ _rS′ + 1 + σ <_ [2][r][S][′][ + 2] _h[∗]_ + 2, _θ[2](S[′]; α)_ _θ[2][∗]_ _[| ≤]_ _[σ <][ Σ][ .]_ _|[b]_ _| ≤_ _ϵ_ _|[b]_ _−_ Thus, for s slightly larger than S[′], we still have that _θ[1](s; α)_ _<_ [2][r][S][′]ϵ[ + 2] _h[∗]_ + 2 and _θ[2](s; α) −_ _θ[2][∗]_ _< Σ._ Denote by S[∗] the first time that [b] [b] _θ[1](S[∗]; α)_ _≥_ [2][r][S][′]ϵ[ + 2] _h[∗]_ + 2 or _θ[2](S[∗]; α) −_ _θ[2][∗]_ _≥_ Σ. Then we show that there exists S1 [S[′], S[∗]] such that (171) is satisfied when σ, Σ, and ξ are small enough. From (170), we have for[b] _s ∈ ∈_ (S[′], S[∗]) that [b] _θ[1](s; α)_ _σ + (s_ _S[′])h[∗]_ _≤_ _−_ _θ[1](s; α) >_ _rS′_ _σ + (s_ _S[′])ϵ/2,_ b _−_ _−_ _−_ 1/2 2rS′ + 2 2rS′ + 2 _θ[2](s; αb) −_ _θ[2][∗]_ _< exp_ _L_ _ϵ_ _h[∗]_ + 2 (s − _S[′])_ _σ[2]_ + 2(s − _S[′])_ _ϵ_ _h[∗]_ + 2 Σξ [b] ----- where the first two inequlaties come from (173) and last inequality comes from (174) via Grönwall’s inequality. Defining _S1 = [2][r][S][′][ + 2]_ + S[′], _ϵ_ we can choose the positive values σ, Σ, and ξ small enough that _θ[1](S1, θ[S][′]_ ) > _rS′ + (S1_ _S[′])ϵ/2 = 1,_ _−_ _−_ and for s [S[′], S1] _∈_ b _θ[1](s; α)_ _<_ [2][r][S][′]ϵ[ + 2] _h[∗]_ + 2, _θ[2](s; α) −_ _θ[2][∗]_ _< Σ ._ (175) According to (175), the bounds (172) are satisfied for s [S[′], S1], which implies that S1 < S[∗] [b] [b] ∈ and _θ[2](S1, θ[S][′]_ ) _A. Further, we have_ _θ[1](S1, θ[S][′]_ ) > 1. By combining these two results, _∈_ we conclude that (171) is satisfied with the chosen values of σ, Σ, ξ, and S1. Thus, we have _θ (S1[b]; α)_ (1, ) _A_ for any α _σ[b](_ _r[∗], θ[2][∗]_ [)][, which proves the claim.] b _∈_ _∞_ _×_ _⊂A_ _∈B_ _−_ ----- |