File size: 10,082 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from __future__ import annotations
from copy import deepcopy
from functools import partial
import torch
from torch import Tensor
from torch.nn import Module
from typing import Set
def exists(val):
return val is not None
def inplace_copy(tgt: Tensor, src: Tensor, *, auto_move_device=False):
if auto_move_device:
src = src.to(tgt.device)
tgt.copy_(src)
def inplace_lerp(tgt: Tensor, src: Tensor, weight, *, auto_move_device=False):
if auto_move_device:
src = src.to(tgt.device)
tgt.lerp_(src, weight)
class EMA(Module):
"""
Implements exponential moving average shadowing for your model.
Utilizes an inverse decay schedule to manage longer term training runs.
By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 2/3.
min_value (float): The minimum EMA decay rate. Default: 0.
"""
def __init__(
self,
model: Module,
ema_model: Module | None = None,
# if your model has lazylinears or other types of non-deepcopyable modules, you can pass in your own ema model
beta=0.9999,
update_after_step=100,
update_every=10,
inv_gamma=1.0,
power=2 / 3,
min_value=0.0,
param_or_buffer_names_no_ema: Set[str] = set(),
ignore_names: Set[str] = set(),
ignore_startswith_names: Set[str] = set(),
include_online_model=True,
# set this to False if you do not wish for the online model to be saved along with the ema model (managed externally)
allow_different_devices=False,
# if the EMA model is on a different device (say CPU), automatically move the tensor
use_foreach=False
):
super().__init__()
self.beta = beta
self.is_frozen = beta == 1.
# whether to include the online model within the module tree, so that state_dict also saves it
self.include_online_model = include_online_model
if include_online_model:
self.online_model = model
else:
self.online_model = [model] # hack
# ema model
self.ema_model = ema_model
if not exists(self.ema_model):
try:
self.ema_model = deepcopy(model)
except Exception as e:
print(f'Error: While trying to deepcopy model: {e}')
print('Your model was not copyable. Please make sure you are not using any LazyLinear')
exit()
for p in self.ema_model.parameters():
p.detach_()
# parameter and buffer names
self.parameter_names = {name for name, param in self.ema_model.named_parameters() if
torch.is_floating_point(param) or torch.is_complex(param)}
self.buffer_names = {name for name, buffer in self.ema_model.named_buffers() if
torch.is_floating_point(buffer) or torch.is_complex(buffer)}
# tensor update functions
self.inplace_copy = partial(inplace_copy, auto_move_device=allow_different_devices)
self.inplace_lerp = partial(inplace_lerp, auto_move_device=allow_different_devices)
# updating hyperparameters
self.update_every = update_every
self.update_after_step = update_after_step
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
assert isinstance(param_or_buffer_names_no_ema, (set, list))
self.param_or_buffer_names_no_ema = param_or_buffer_names_no_ema # parameter or buffer
self.ignore_names = ignore_names
self.ignore_startswith_names = ignore_startswith_names
# whether to manage if EMA model is kept on a different device
self.allow_different_devices = allow_different_devices
# whether to use foreach
if use_foreach:
assert hasattr(torch, '_foreach_lerp_') and hasattr(torch,
'_foreach_copy_'), 'your version of torch does not have the prerequisite foreach functions'
self.use_foreach = use_foreach
# init and step states
self.register_buffer('initted', torch.tensor(False))
self.register_buffer('step', torch.tensor(0))
@property
def model(self):
return self.online_model if self.include_online_model else self.online_model[0]
def eval(self):
return self.ema_model.eval()
def restore_ema_model_device(self):
device = self.initted.device
self.ema_model.to(device)
def get_params_iter(self, model):
for name, param in model.named_parameters():
if name not in self.parameter_names:
continue
yield name, param
def get_buffers_iter(self, model):
for name, buffer in model.named_buffers():
if name not in self.buffer_names:
continue
yield name, buffer
def copy_params_from_model_to_ema(self):
copy = self.inplace_copy
for (_, ma_params), (_, current_params) in zip(self.get_params_iter(self.ema_model),
self.get_params_iter(self.model)):
copy(ma_params.data, current_params.data)
for (_, ma_buffers), (_, current_buffers) in zip(self.get_buffers_iter(self.ema_model),
self.get_buffers_iter(self.model)):
copy(ma_buffers.data, current_buffers.data)
def copy_params_from_ema_to_model(self):
copy = self.inplace_copy
for (_, ma_params), (_, current_params) in zip(self.get_params_iter(self.ema_model),
self.get_params_iter(self.model)):
copy(current_params.data, ma_params.data)
for (_, ma_buffers), (_, current_buffers) in zip(self.get_buffers_iter(self.ema_model),
self.get_buffers_iter(self.model)):
copy(current_buffers.data, ma_buffers.data)
def get_current_decay(self):
epoch = (self.step - self.update_after_step - 1).clamp(min=0.)
value = 1 - (1 + epoch / self.inv_gamma) ** - self.power
if epoch.item() <= 0:
return 0.
return value.clamp(min=self.min_value, max=self.beta).item()
def update(self):
step = self.step.item()
self.step += 1
if (step % self.update_every) != 0:
return
if step <= self.update_after_step:
self.copy_params_from_model_to_ema()
return
if not self.initted.item():
self.copy_params_from_model_to_ema()
self.initted.data.copy_(torch.tensor(True))
self.update_moving_average(self.ema_model, self.model)
@torch.no_grad()
def update_moving_average(self, ma_model, current_model):
if self.is_frozen:
return
current_decay = self.get_current_decay()
# store all source and target tensors to copy or lerp
tensors_to_copy = []
tensors_to_lerp = []
# loop through parameters
for (name, current_params), (_, ma_params) in zip(self.get_params_iter(current_model),
self.get_params_iter(ma_model)):
if name in self.ignore_names:
continue
if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]):
continue
if name in self.param_or_buffer_names_no_ema:
tensors_to_copy.append((ma_params.data, current_params.data))
continue
tensors_to_lerp.append((ma_params.data, current_params.data))
# loop through buffers
for (name, current_buffer), (_, ma_buffer) in zip(self.get_buffers_iter(current_model),
self.get_buffers_iter(ma_model)):
if name in self.ignore_names:
continue
if any([name.startswith(prefix) for prefix in self.ignore_startswith_names]):
continue
if name in self.param_or_buffer_names_no_ema:
tensors_to_copy.append((ma_buffer.data, current_buffer.data))
continue
tensors_to_lerp.append((ma_buffer.data, current_buffer.data))
# execute inplace copy or lerp
if not self.use_foreach:
for tgt, src in tensors_to_copy:
self.inplace_copy(tgt, src)
for tgt, src in tensors_to_lerp:
self.inplace_lerp(tgt, src, 1. - current_decay)
else:
# use foreach if available and specified
if self.allow_different_devices:
tensors_to_copy = [(tgt, src.to(tgt.device)) for tgt, src in tensors_to_copy]
tensors_to_lerp = [(tgt, src.to(tgt.device)) for tgt, src in tensors_to_lerp]
if len(tensors_to_copy) > 0:
tgt_copy, src_copy = zip(*tensors_to_copy)
torch._foreach_copy_(tgt_copy, src_copy)
if len(tensors_to_lerp) > 0:
tgt_lerp, src_lerp = zip(*tensors_to_lerp)
torch._foreach_lerp_(tgt_lerp, src_lerp, 1. - current_decay)
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
|