File size: 12,034 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# This file trains a DDPM diffusion model on 2D datasets.

import argparse
import json
import time
import os.path as osp
import numpy as np
from tqdm.auto import tqdm
import npeet.entropy_estimators as ee
import pickle
import pathlib

import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR
from ema_pytorch import EMA

import datasets

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class SinusoidalEmbedding(nn.Module):
    def __init__(self, dim: int, scale: float = 1.0):
        super().__init__()
        self.dim = dim
        self.scale = scale

    def forward(self, x: torch.Tensor):
        x = x * self.scale
        half_dim = self.dim // 2
        emb = torch.log(torch.Tensor([10000.0])) / (half_dim - 1)
        emb = torch.exp(-emb * torch.arange(half_dim)).to(device)
        emb = x.unsqueeze(-1) * emb.unsqueeze(0)
        emb = torch.cat((torch.sin(emb), torch.cos(emb)), dim=-1)
        return emb


class ResidualBlock(nn.Module):
    def __init__(self, width: int):
        super().__init__()
        self.ff = nn.Linear(width, width)
        self.act = nn.ReLU()

    def forward(self, x: torch.Tensor):
        return x + self.ff(self.act(x))


class MLPDenoiser(nn.Module):
    def __init__(
            self,
            embedding_dim: int = 128,
            hidden_dim: int = 256,
            hidden_layers: int = 3,
    ):
        super().__init__()
        self.time_mlp = SinusoidalEmbedding(embedding_dim)
        # sinusoidal embeddings help capture high-frequency patterns for low-dim data
        self.input_mlp1 = SinusoidalEmbedding(embedding_dim, scale=25.0)
        self.input_mlp2 = SinusoidalEmbedding(embedding_dim, scale=25.0)

        self.gating_network = nn.Sequential(
            nn.Linear(embedding_dim * 3, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Linear(hidden_dim // 2, 1),
            nn.Sigmoid()
        )

        self.expert1 = nn.Sequential(
            nn.Linear(embedding_dim * 3, hidden_dim),
            *[ResidualBlock(hidden_dim) for _ in range(hidden_layers)],
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Linear(hidden_dim // 2, 2),
        )

        self.expert2 = nn.Sequential(
            nn.Linear(embedding_dim * 3, hidden_dim),
            *[ResidualBlock(hidden_dim) for _ in range(hidden_layers)],
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Linear(hidden_dim // 2, 2),
        )

    def forward(self, x, t):
        x1_emb = self.input_mlp1(x[:, 0])
        x2_emb = self.input_mlp2(x[:, 1])
        t_emb = self.time_mlp(t)
        emb = torch.cat([x1_emb, x2_emb, t_emb], dim=-1)
        
        gating_weight = self.gating_network(emb)
        expert1_output = self.expert1(emb)
        expert2_output = self.expert2(emb)
        
        return gating_weight * expert1_output + (1 - gating_weight) * expert2_output


class NoiseScheduler():
    def __init__(
            self,
            num_timesteps=1000,
            beta_start=0.0001,
            beta_end=0.02,
            beta_schedule="linear",
    ):
        self.num_timesteps = num_timesteps
        if beta_schedule == "linear":
            self.betas = torch.linspace(
                beta_start, beta_end, num_timesteps, dtype=torch.float32).to(device)
        elif beta_schedule == "quadratic":
            self.betas = (torch.linspace(
                beta_start ** 0.5, beta_end ** 0.5, num_timesteps, dtype=torch.float32) ** 2).to(device)
        else:
            raise ValueError(f"Unknown beta schedule: {beta_schedule}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, axis=0).to(device)
        self.alphas_cumprod_prev = F.pad(self.alphas_cumprod[:-1], (1, 0), value=1.).to(device)

        # required for self.add_noise
        self.sqrt_alphas_cumprod = (self.alphas_cumprod ** 0.5).to(device)
        self.sqrt_one_minus_alphas_cumprod = ((1 - self.alphas_cumprod) ** 0.5).to(device)

        # required for reconstruct_x0
        self.sqrt_inv_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod).to(device)
        self.sqrt_inv_alphas_cumprod_minus_one = torch.sqrt(
            1 / self.alphas_cumprod - 1).to(device)

        # required for q_posterior
        self.posterior_mean_coef1 = self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1. - self.alphas_cumprod).to(
            device)
        self.posterior_mean_coef2 = ((1. - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (
                1. - self.alphas_cumprod)).to(device)

    def reconstruct_x0(self, x_t, t, noise):
        s1 = self.sqrt_inv_alphas_cumprod[t]
        s2 = self.sqrt_inv_alphas_cumprod_minus_one[t]
        s1 = s1.reshape(-1, 1)
        s2 = s2.reshape(-1, 1)
        return s1 * x_t - s2 * noise

    def q_posterior(self, x_0, x_t, t):
        s1 = self.posterior_mean_coef1[t]
        s2 = self.posterior_mean_coef2[t]
        s1 = s1.reshape(-1, 1)
        s2 = s2.reshape(-1, 1)
        mu = s1 * x_0 + s2 * x_t
        return mu

    def get_variance(self, t):
        if t == 0:
            return 0

        variance = self.betas[t] * (1. - self.alphas_cumprod_prev[t]) / (1. - self.alphas_cumprod[t])
        variance = variance.clip(1e-20)
        return variance

    def step(self, model_output, timestep, sample):
        t = timestep
        pred_original_sample = self.reconstruct_x0(sample, t, model_output)
        pred_prev_sample = self.q_posterior(pred_original_sample, sample, t)

        variance = 0
        if t > 0:
            noise = torch.randn_like(model_output)
            variance = (self.get_variance(t) ** 0.5) * noise

        pred_prev_sample = pred_prev_sample + variance

        return pred_prev_sample

    def add_noise(self, x_start, x_noise, timesteps):
        s1 = self.sqrt_alphas_cumprod[timesteps]
        s2 = self.sqrt_one_minus_alphas_cumprod[timesteps]

        s1 = s1.reshape(-1, 1)
        s2 = s2.reshape(-1, 1)

        return s1 * x_start + s2 * x_noise

    def __len__(self):
        return self.num_timesteps


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_batch_size", type=int, default=256)
    parser.add_argument("--eval_batch_size", type=int, default=10000)
    parser.add_argument("--learning_rate", type=float, default=3e-4)
    parser.add_argument("--num_timesteps", type=int, default=100)
    parser.add_argument("--num_train_steps", type=int, default=10000)
    parser.add_argument("--beta_schedule", type=str, default="linear", choices=["linear", "quadratic"])
    parser.add_argument("--embedding_dim", type=int, default=128)
    parser.add_argument("--hidden_size", type=int, default=256)
    parser.add_argument("--hidden_layers", type=int, default=3)
    parser.add_argument("--out_dir", type=str, default="run_0")
    config = parser.parse_args()

    final_infos = {}
    all_results = {}

    pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)

    for dataset_name in ["circle", "dino", "line", "moons"]:
        dataset = datasets.get_dataset(dataset_name, n=100000)
        dataloader = DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)

        model = MLPDenoiser(
            embedding_dim=config.embedding_dim,
            hidden_dim=config.hidden_size,
            hidden_layers=config.hidden_layers,
        ).to(device)
        ema_model = EMA(model, beta=0.995, update_every=10).to(device)

        noise_scheduler = NoiseScheduler(num_timesteps=config.num_timesteps, beta_schedule=config.beta_schedule)

        optimizer = torch.optim.AdamW(
            model.parameters(),
            lr=config.learning_rate,
        )
        scheduler = CosineAnnealingLR(optimizer, T_max=config.num_train_steps)
        train_losses = []
        print("Training model...")

        model.train()
        global_step = 0
        progress_bar = tqdm(total=config.num_train_steps)
        progress_bar.set_description("Training")

        start_time = time.time()
        while global_step < config.num_train_steps:
            for batch in dataloader:
                if global_step >= config.num_train_steps:
                    break
                batch = batch[0].to(device)
                noise = torch.randn(batch.shape).to(device)
                timesteps = torch.randint(
                    0, noise_scheduler.num_timesteps, (batch.shape[0],)
                ).long().to(device)

                noisy = noise_scheduler.add_noise(batch, noise, timesteps)
                noise_pred = model(noisy, timesteps)
                loss = F.mse_loss(noise_pred, noise)
                loss.backward()

                nn.utils.clip_grad_norm_(model.parameters(), 0.5)
                optimizer.step()
                optimizer.zero_grad()
                ema_model.update()

                scheduler.step()
                progress_bar.update(1)
                logs = {"loss": loss.detach().item()}
                train_losses.append(loss.detach().item())
                progress_bar.set_postfix(**logs)
                global_step += 1

        progress_bar.close()
        end_time = time.time()
        training_time = end_time - start_time

        # Eval loss
        model.eval()
        eval_losses = []
        for batch in dataloader:
            batch = batch[0].to(device)
            noise = torch.randn(batch.shape).to(device)
            timesteps = torch.randint(
                0, noise_scheduler.num_timesteps, (batch.shape[0],)
            ).long().to(device)
            noisy = noise_scheduler.add_noise(batch, noise, timesteps)
            noise_pred = model(noisy, timesteps)
            loss = F.mse_loss(noise_pred, noise)
            eval_losses.append(loss.detach().item())
        eval_loss = np.mean(eval_losses)

        # Eval image saving
        ema_model.eval()
        sample = torch.randn(config.eval_batch_size, 2).to(device)
        timesteps = list(range(len(noise_scheduler)))[::-1]
        inference_start_time = time.time()
        for t in timesteps:
            t = torch.from_numpy(np.repeat(t, config.eval_batch_size)).long().to(device)
            with torch.no_grad():
                residual = ema_model(sample, t)
            sample = noise_scheduler.step(residual, t[0], sample)
        sample = sample.cpu().numpy()
        inference_end_time = time.time()
        inference_time = inference_end_time - inference_start_time

        # Eval estimated KL
        real_data = dataset.tensors[0].numpy()
        kl_divergence = ee.kldiv(real_data, sample, k=5)

        # Calculate gating weights for visualization
        with torch.no_grad():
            x = torch.from_numpy(sample).float().to(device)
            t = torch.zeros(x.shape[0], dtype=torch.long).to(device)
            gating_weights = ema_model.ema_model.gating_network(
                torch.cat([
                    ema_model.ema_model.input_mlp1(x[:, 0]),
                    ema_model.ema_model.input_mlp2(x[:, 1]),
                    ema_model.ema_model.time_mlp(t)
                ], dim=-1)
            ).cpu().numpy()

        final_infos[dataset_name] = {
            "means": {
                "training_time": training_time,
                "eval_loss": eval_loss,
                "inference_time": inference_time,
                "kl_divergence": kl_divergence,
            }
        }

        all_results[dataset_name] = {
            "train_losses": train_losses,
            "images": sample,
            "gating_weights": gating_weights,
        }

    with open(osp.join(config.out_dir, "final_info.json"), "w") as f:
        json.dump(final_infos, f)

    with open(osp.join(config.out_dir, "all_results.pkl"), "wb") as f:
        pickle.dump(all_results, f)