File size: 11,670 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# This file trains a DDPM diffusion model on 2D datasets.
import argparse
import json
import time
import os.path as osp
import numpy as np
from tqdm.auto import tqdm
import npeet.entropy_estimators as ee
import pickle
import pathlib
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR
from ema_pytorch import EMA
import datasets
from discriminator import Discriminator
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SinusoidalEmbedding(nn.Module):
def __init__(self, dim: int, scale: float = 1.0):
super().__init__()
self.dim = dim
self.scale = scale
def forward(self, x: torch.Tensor):
x = x * self.scale
half_dim = self.dim // 2
emb = torch.log(torch.Tensor([10000.0])) / (half_dim - 1)
emb = torch.exp(-emb * torch.arange(half_dim)).to(device)
emb = x.unsqueeze(-1) * emb.unsqueeze(0)
emb = torch.cat((torch.sin(emb), torch.cos(emb)), dim=-1)
return emb
class ResidualBlock(nn.Module):
def __init__(self, width: int):
super().__init__()
self.ff = nn.Linear(width, width)
self.act = nn.ReLU()
def forward(self, x: torch.Tensor):
return x + self.ff(self.act(x))
class MLPDenoiser(nn.Module):
def __init__(
self,
embedding_dim: int = 128,
hidden_dim: int = 256,
hidden_layers: int = 3,
):
super().__init__()
self.time_mlp = SinusoidalEmbedding(embedding_dim)
# sinusoidal embeddings help capture high-frequency patterns for low-dim data
self.input_mlp1 = SinusoidalEmbedding(embedding_dim, scale=25.0)
self.input_mlp2 = SinusoidalEmbedding(embedding_dim, scale=25.0)
self.network = nn.Sequential(
nn.Linear(embedding_dim * 3, hidden_dim),
*[ResidualBlock(hidden_dim) for _ in range(hidden_layers)],
nn.ReLU(),
nn.Linear(hidden_dim, 2),
)
def forward(self, x, t):
x1_emb = self.input_mlp1(x[:, 0])
x2_emb = self.input_mlp2(x[:, 1])
t_emb = self.time_mlp(t)
emb = torch.cat([x1_emb, x2_emb, t_emb], dim=-1)
return self.network(emb)
class NoiseScheduler():
def __init__(
self,
num_timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear",
):
self.num_timesteps = num_timesteps
if beta_schedule == "linear":
self.betas = torch.linspace(
beta_start, beta_end, num_timesteps, dtype=torch.float32).to(device)
elif beta_schedule == "quadratic":
self.betas = (torch.linspace(
beta_start ** 0.5, beta_end ** 0.5, num_timesteps, dtype=torch.float32) ** 2).to(device)
else:
raise ValueError(f"Unknown beta schedule: {beta_schedule}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, axis=0).to(device)
self.alphas_cumprod_prev = F.pad(self.alphas_cumprod[:-1], (1, 0), value=1.).to(device)
# required for self.add_noise
self.sqrt_alphas_cumprod = (self.alphas_cumprod ** 0.5).to(device)
self.sqrt_one_minus_alphas_cumprod = ((1 - self.alphas_cumprod) ** 0.5).to(device)
# required for reconstruct_x0
self.sqrt_inv_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod).to(device)
self.sqrt_inv_alphas_cumprod_minus_one = torch.sqrt(
1 / self.alphas_cumprod - 1).to(device)
# required for q_posterior
self.posterior_mean_coef1 = self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1. - self.alphas_cumprod).to(
device)
self.posterior_mean_coef2 = ((1. - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (
1. - self.alphas_cumprod)).to(device)
def reconstruct_x0(self, x_t, t, noise):
s1 = self.sqrt_inv_alphas_cumprod[t]
s2 = self.sqrt_inv_alphas_cumprod_minus_one[t]
s1 = s1.reshape(-1, 1)
s2 = s2.reshape(-1, 1)
return s1 * x_t - s2 * noise
def q_posterior(self, x_0, x_t, t):
s1 = self.posterior_mean_coef1[t]
s2 = self.posterior_mean_coef2[t]
s1 = s1.reshape(-1, 1)
s2 = s2.reshape(-1, 1)
mu = s1 * x_0 + s2 * x_t
return mu
def get_variance(self, t):
if t == 0:
return 0
variance = self.betas[t] * (1. - self.alphas_cumprod_prev[t]) / (1. - self.alphas_cumprod[t])
variance = variance.clip(1e-20)
return variance
def step(self, model_output, timestep, sample):
t = timestep
pred_original_sample = self.reconstruct_x0(sample, t, model_output)
pred_prev_sample = self.q_posterior(pred_original_sample, sample, t)
variance = 0
if t > 0:
noise = torch.randn_like(model_output)
variance = (self.get_variance(t) ** 0.5) * noise
pred_prev_sample = pred_prev_sample + variance
return pred_prev_sample
def add_noise(self, x_start, x_noise, timesteps):
s1 = self.sqrt_alphas_cumprod[timesteps]
s2 = self.sqrt_one_minus_alphas_cumprod[timesteps]
s1 = s1.reshape(-1, 1)
s2 = s2.reshape(-1, 1)
return s1 * x_start + s2 * x_noise
def __len__(self):
return self.num_timesteps
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_batch_size", type=int, default=256)
parser.add_argument("--eval_batch_size", type=int, default=10000)
parser.add_argument("--learning_rate", type=float, default=3e-4)
parser.add_argument("--num_timesteps", type=int, default=100)
parser.add_argument("--num_train_steps", type=int, default=10000)
parser.add_argument("--beta_schedule", type=str, default="linear", choices=["linear", "quadratic"])
parser.add_argument("--embedding_dim", type=int, default=128)
parser.add_argument("--hidden_size", type=int, default=256)
parser.add_argument("--hidden_layers", type=int, default=3)
parser.add_argument("--out_dir", type=str, default="run_0")
config = parser.parse_args()
final_infos = {}
all_results = {}
pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)
for dataset_name in ["circle", "dino", "line", "moons"]:
dataset = datasets.get_dataset(dataset_name, n=100000)
dataloader = DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)
model = MLPDenoiser(
embedding_dim=config.embedding_dim,
hidden_dim=config.hidden_size,
hidden_layers=config.hidden_layers,
).to(device)
discriminator = Discriminator().to(device)
ema_model = EMA(model, beta=0.995, update_every=10).to(device)
d_optimizer = torch.optim.AdamW(discriminator.parameters(), lr=config.learning_rate)
noise_scheduler = NoiseScheduler(num_timesteps=config.num_timesteps, beta_schedule=config.beta_schedule)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config.learning_rate,
)
scheduler = CosineAnnealingLR(optimizer, T_max=config.num_train_steps)
train_losses = []
print("Training model...")
model.train()
global_step = 0
progress_bar = tqdm(total=config.num_train_steps)
progress_bar.set_description("Training")
start_time = time.time()
while global_step < config.num_train_steps:
for batch in dataloader:
if global_step >= config.num_train_steps:
break
batch = batch[0].to(device)
noise = torch.randn(batch.shape).to(device)
timesteps = torch.randint(
0, noise_scheduler.num_timesteps, (batch.shape[0],)
).long().to(device)
noisy = noise_scheduler.add_noise(batch, noise, timesteps)
noise_pred = model(noisy, timesteps)
real_labels = torch.ones(batch.size(0), 1).to(device)
fake_labels = torch.zeros(batch.size(0), 1).to(device)
# Train Discriminator
d_optimizer.zero_grad()
real_output = discriminator(batch)
fake_output = discriminator(noisy.detach())
d_loss_real = F.binary_cross_entropy_with_logits(real_output, real_labels)
d_loss_fake = F.binary_cross_entropy_with_logits(fake_output, fake_labels)
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
d_optimizer.step()
# Train Denoiser
noise_pred = model(noisy, timesteps)
recon_loss = F.mse_loss(noise_pred, noise)
fake_output = discriminator(noisy)
adv_loss = F.binary_cross_entropy_with_logits(fake_output, real_labels)
loss = recon_loss + adv_loss
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
optimizer.zero_grad()
ema_model.update()
scheduler.step()
progress_bar.update(1)
logs = {"loss": loss.detach().item()}
train_losses.append(loss.detach().item())
progress_bar.set_postfix(**logs)
global_step += 1
progress_bar.close()
end_time = time.time()
training_time = end_time - start_time
# Eval loss
model.eval()
eval_losses = []
for batch in dataloader:
batch = batch[0].to(device)
noise = torch.randn(batch.shape).to(device)
timesteps = torch.randint(
0, noise_scheduler.num_timesteps, (batch.shape[0],)
).long().to(device)
noisy = noise_scheduler.add_noise(batch, noise, timesteps)
noise_pred = model(noisy, timesteps)
loss = F.mse_loss(noise_pred, noise)
eval_losses.append(loss.detach().item())
eval_loss = np.mean(eval_losses)
# Eval image saving
ema_model.eval()
sample = torch.randn(config.eval_batch_size, 2).to(device)
timesteps = list(range(len(noise_scheduler)))[::-1]
inference_start_time = time.time()
for t in timesteps:
t = torch.from_numpy(np.repeat(t, config.eval_batch_size)).long().to(device)
with torch.no_grad():
residual = ema_model(sample, t)
sample = noise_scheduler.step(residual, t[0], sample)
sample = sample.cpu().numpy()
inference_end_time = time.time()
inference_time = inference_end_time - inference_start_time
# Eval estimated KL
real_data = dataset.tensors[0].numpy()
kl_divergence = ee.kldiv(real_data, sample, k=5)
final_infos[dataset_name] = {
"means": {
"training_time": training_time,
"eval_loss": eval_loss,
"inference_time": inference_time,
"kl_divergence": kl_divergence,
}
}
all_results[dataset_name] = {
"train_losses": train_losses,
"images": sample,
}
with open(osp.join(config.out_dir, "final_info.json"), "w") as f:
json.dump(final_infos, f)
with open(osp.join(config.out_dir, "all_results.pkl"), "wb") as f:
pickle.dump(all_results, f)
|