File size: 22,959 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import json
import os
import os.path as osp
import time
from typing import Dict, List, Union

import backoff
import requests
from strictjson import strict_json

from ai_scientist.llm import (
    allchoices,
    extract_json_between_markers,
    get_response_from_llm,
    llm_json_auto_correct,
)

S2_API_KEY = os.getenv("S2_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")


idea_first_prompt = """{task_description}
<experiment.py>
{code}
</experiment.py>

Here are the ideas that you have already generated:

'''
{prev_ideas_string}
'''

Come up with the next impactful and creative idea for research experiments and directions you can feasibly investigate with the code provided.
Note that you will not have access to any additional resources or datasets.
Make sure any idea is not overfit the specific training dataset or model, and has wider significance.

Respond in the following format:

THOUGHT:
<THOUGHT>

NEW IDEA JSON:
```json
<JSON>
```

In <THOUGHT>, first briefly discuss your intuitions and motivations for the idea. Detail your high-level plan, necessary design choices and ideal outcomes of the experiments. Justify how the idea is different from the existing ones.

Add '```json' before the <JSON> and '```' after the <JSON> as above. In <JSON>, provide the new idea in JSON format with the following keys and values:
- "Name": A shortened descriptor of the idea. Lowercase, no spaces, underscores allowed.
- "Title": A title for the idea, will be used for the report writing.
- "Experiment": An outline of the implementation. E.g. which functions need to be added or modified, how results will be obtained, ...
- "Interestingness": A rating from 1 to 10 (lowest to highest).
- "Feasibility": A rating from 1 to 10 (lowest to highest).
- "Novelty": A rating from 1 to 10 (lowest to highest).

Be cautious and realistic on your ratings.
This JSON will be automatically parsed, so ensure the format is precise.
You will have {num_reflections} rounds to iterate on the idea, but do not need to use them all.
"""

idea_reflection_prompt = """Round {current_round}/{num_reflections}.
In your thoughts, first carefully consider the quality, novelty, and feasibility of the idea you just created.
Include any other factors that you think are important in evaluating the idea.
Ensure the idea is clear and concise, and the JSON is the correct format.
Do not make things overly complicated.
In the next attempt, try and refine and improve your idea.
Stick to the spirit of the original idea unless there are glaring issues.

Respond in the exactly the same format as before:
THOUGHT:
<THOUGHT>

NEW IDEA JSON:
```json
<JSON>
```

If there is nothing to improve, simply repeat the previous JSON EXACTLY after the thought and include "I am done" at the end of the thoughts but before the JSON.
ONLY INCLUDE "I am done" IF YOU ARE MAKING NO MORE CHANGES.
"""


# Format the content in JSON
def format_idea_json(text):
    json_start_marker = "```json"
    json_end_marker = "```"
    start_index = text.find(json_start_marker)
    if start_index != -1:
        start_index += len(json_start_marker)  # Move past the marker
        end_index = text.find(json_end_marker, start_index)
    json_string = text[start_index:end_index].strip()
    res = strict_json(
        system_prompt="You are a JSON formatter",
        user_prompt=json_string,
        output_format={
            "Name": "A shortened descriptor of the idea",
            "Title": "A title for the idea, will be used for the report writing",
            "Experiment": "An outline of the implementation, type: list",
            "Interestingness": "A rating from 1 to 10 (lowest to highest), type: int",
            "Feasibility": "A rating from 1 to 10 (lowest to highest), type: int",
            "Novelty": "A rating from 1 to 10 (lowest to highest), type: int",
        },
        llm=llm_json_auto_correct,
    )
    text = "```json\n" + json.dumps(res) + "```\n"
    return text


def format_novelty_json(text):
    json_start_marker = "```json"
    json_end_marker = "```"
    start_index = text.find(json_start_marker)
    if start_index != -1:
        start_index += len(json_start_marker)  # Move past the marker
        end_index = text.find(json_end_marker, start_index)
    json_string = text[start_index:end_index].strip()
    res = strict_json(
        system_prompt="You are a JSON formatter",
        user_prompt=json_string,
        output_format={
            "Query": "An optional search query to search the literature (e.g. attention is all you need)",
        },
        llm=llm_json_auto_correct,
    )
    text = "```json\n" + json.dumps(res) + "```\n"
    return text


# GENERATE IDEAS
def generate_ideas(
    base_dir,
    client,
    model,
    skip_generation=False,
    max_num_generations=20,
    num_reflections=5,
):
    if skip_generation:
        # Load existing ideas from file
        try:
            with open(osp.join(base_dir, "ideas.json"), "r") as f:
                ideas = json.load(f)
            print("Loaded existing ideas:")
            for idea in ideas:
                print(idea)
            return ideas
        except FileNotFoundError:
            print("No existing ideas found. Generating new ideas.")
        except json.JSONDecodeError:
            print("Error decoding existing ideas. Generating new ideas.")

    idea_str_archive = []
    with open(osp.join(base_dir, "seed_ideas.json"), "r") as f:
        seed_ideas = json.load(f)
    for seed_idea in seed_ideas:
        idea_str_archive.append(json.dumps(seed_idea))

    with open(osp.join(base_dir, "experiment.py"), "r") as f:
        code = f.read()

    with open(osp.join(base_dir, "prompt.json"), "r") as f:
        prompt = json.load(f)

    idea_system_prompt = prompt["system"]

    for _ in range(max_num_generations):
        print()
        print(f"Generating idea {_ + 1}/{max_num_generations}")
        import traceback
        try:
            prev_ideas_string = "\n\n".join(idea_str_archive)

            msg_history = []
            print(f"Iteration 1/{num_reflections}")
            text, msg_history = get_response_from_llm(
                idea_first_prompt.format(
                    task_description=prompt["task_description"],
                    code=code,
                    prev_ideas_string=prev_ideas_string,
                    num_reflections=num_reflections,
                ),
                client=client,
                model=model,
                system_message=idea_system_prompt,
                msg_history=msg_history,
            )
            ## Format the content in JSON
            text = format_idea_json(text)

            ## PARSE OUTPUT
            json_output = extract_json_between_markers(text)
            assert json_output is not None, "Failed to extract JSON from LLM output"
            # print(json_output)

            # Iteratively improve task.
            if num_reflections > 1:
                for j in range(num_reflections - 1):
                    print(f"Iteration {j + 2}/{num_reflections}")
                    text, msg_history = get_response_from_llm(
                        idea_reflection_prompt.format(
                            current_round=j + 2, num_reflections=num_reflections
                        ),
                        client=client,
                        model=model,
                        system_message=idea_system_prompt,
                        msg_history=msg_history,
                    )
                    ## Format the content in JSON if using weak LLM
                    text = format_idea_json(text)
                    ## PARSE OUTPUT
                    json_output = extract_json_between_markers(text)
                    assert (
                        json_output is not None
                    ), "Failed to extract JSON from LLM output"
                    # print(json_output)

                    if "I am done" in text:
                        print(f"Idea generation converged after {j + 2} iterations.")
                        break

            idea_str_archive.append(json.dumps(json_output))
        except Exception as e:
            print(f"Failed to generate idea: {e}")
            traceback.print_exc()
            continue

    ## SAVE IDEAS
    ideas = []
    for idea_str in idea_str_archive:
        ideas.append(json.loads(idea_str))

    with open(osp.join(base_dir, "ideas.json"), "w") as f:
        json.dump(ideas, f, indent=4)

    return ideas


# GENERATE IDEAS OPEN-ENDED
def generate_next_idea(
    base_dir,
    client,
    model,
    prev_idea_archive=[],
    num_reflections=5,
    max_attempts=10,
):
    idea_archive = prev_idea_archive
    original_archive_size = len(idea_archive)

    print(f"Generating idea {original_archive_size + 1}")

    if len(prev_idea_archive) == 0:
        print(f"First iteration, taking seed ideas")
        # seed the archive on the first run with pre-existing ideas
        with open(osp.join(base_dir, "seed_ideas.json"), "r") as f:
            seed_ideas = json.load(f)
        for seed_idea in seed_ideas[:1]:
            idea_archive.append(seed_idea)
    else:
        with open(osp.join(base_dir, "experiment.py"), "r") as f:
            code = f.read()
        with open(osp.join(base_dir, "prompt.json"), "r") as f:
            prompt = json.load(f)
        idea_system_prompt = prompt["system"]

        for _ in range(max_attempts):
            import traceback
            try:
                idea_strings = []
                for idea in idea_archive:
                    idea_strings.append(json.dumps(idea))
                prev_ideas_string = "\n\n".join(idea_strings)

                msg_history = []
                print(f"Iteration 1/{num_reflections}")
                text, msg_history = get_response_from_llm(
                    idea_first_prompt.format(
                        task_description=prompt["task_description"],
                        code=code,
                        prev_ideas_string=prev_ideas_string,
                        num_reflections=num_reflections,
                    )
                    + """
Completed ideas have an additional "Score" field which indicates the assessment by an expert ML reviewer.
This is on a standard 1-10 ML conference scale.
Scores of 0 indicate the idea failed either during experimentation, writeup or reviewing.
""",
                    client=client,
                    model=model,
                    system_message=idea_system_prompt,
                    msg_history=msg_history,
                )
                ## Format the content in JSON if using weak LLM
                text = format_idea_json(text)
                ## PARSE OUTPUT
                json_output = extract_json_between_markers(text)
                assert json_output is not None, "Failed to extract JSON from LLM output"
                # print(json_output)

                # Iteratively improve task.
                if num_reflections > 1:
                    for j in range(num_reflections - 1):
                        print(f"Iteration {j + 2}/{num_reflections}")
                        text, msg_history = get_response_from_llm(
                            idea_reflection_prompt.format(
                                current_round=j + 2, num_reflections=num_reflections
                            ),
                            client=client,
                            model=model,
                            system_message=idea_system_prompt,
                            msg_history=msg_history,
                        )
                        ## Format the content in JSON if using weak LLM
                        text = format_idea_json(text)
                        ## PARSE OUTPUT
                        json_output = extract_json_between_markers(text)
                        assert (
                            json_output is not None
                        ), "Failed to extract JSON from LLM output"
                        # print(json_output)

                        if "I am done" in text:
                            print(
                                f"Idea generation converged after {j + 2} iterations."
                            )
                            break

                idea_archive.append(json_output)
                break
            except Exception as e:
                print(f"Failed to generate idea: {e}")
                traceback.print_exc()
                continue

    ## SAVE IDEAS
    with open(osp.join(base_dir, "ideas.json"), "w") as f:
        json.dump(idea_archive, f, indent=4)

    return idea_archive


def on_backoff(details):
    print(
        f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries "
        f"calling function {details['target'].__name__} at {time.strftime('%X')}"
    )


@backoff.on_exception(
    backoff.expo, requests.exceptions.HTTPError, on_backoff=on_backoff
)
def search_for_papers(query, result_limit=10) -> Union[None, List[Dict]]:
    if not query:
        return None
    rsp = requests.get(
        "https://api.semanticscholar.org/graph/v1/paper/search",
        headers={"X-API-KEY": S2_API_KEY},
        params={
            "query": query,
            "limit": result_limit,
            "fields": "title,authors,venue,year,abstract,citationStyles,citationCount",
        },
    )
    print(f"Response Status Code: {rsp.status_code}")
    print(
        f"Response Content: {rsp.text[:500]}"
    )  # Print the first 500 characters of the response content
    rsp.raise_for_status()
    results = rsp.json()
    total = results["total"]
    if not total:
        return None
    time.sleep(2)
    papers = results["data"]
    return papers


novelty_system_msg = """You are an ambitious AI PhD student who is looking to publish a paper that will contribute significantly to the field.
You have an idea and you want to check if it is novel or not. I.e., not overlapping significantly with existing literature or already well explored.
Be a harsh critic for novelty, ensure there is a sufficient contribution in the idea for a new conference or workshop paper.
You will be given access to the Semantic Scholar API, which you may use to survey the literature and find relevant papers to help you make your decision.
The top 10 results for any search query will be presented to you with the abstracts.

You will be given {num_rounds} to decide on the paper, but you do not need to use them all.
At any round, you may exit early and decide on the novelty of the idea.
Decide a paper idea is novel if after sufficient searching, you have not found a paper that significantly overlaps with your idea.
Decide a paper idea is not novel, if you have found a paper that significantly overlaps with your idea.

{task_description}
<experiment.py>
{code}
</experiment.py>
"""

novelty_prompt = '''Round {current_round}/{num_rounds}.
You have this idea:

"""
{idea}
"""

The results of the last query are (empty on first round):
"""
{last_query_results}
"""

Respond in the following format:

THOUGHT:
<THOUGHT>

RESPONSE:
```json
<JSON>
```

In <THOUGHT>, first briefly reason over the idea and identify any query that could help you make your decision.
If you have made your decision, add "Decision made: novel." or "Decision made: not novel." to your thoughts.

In <JSON>, respond in JSON format with ONLY the following field:
- "Query": An optional search query to search the literature (e.g. attention is all you need). You must make a query if you have not decided this round.

A query will work best if you are able to recall the exact name of the paper you are looking for, or the authors.
This JSON will be automatically parsed, so ensure the format is precise.
'''


def check_idea_novelty(
    ideas,
    base_dir,
    client,
    model,
    max_num_iterations=10,
):
    with open(osp.join(base_dir, "experiment.py"), "r") as f:
        code = f.read()
    with open(osp.join(base_dir, "prompt.json"), "r") as f:
        prompt = json.load(f)
        task_description = prompt["task_description"]

    for idx, idea in enumerate(ideas):
        if "novel" in idea:
            print(f"Skipping idea {idx}, already checked.")
            continue

        print(f"\nChecking novelty of idea {idx}: {idea['Name']}")

        novel = False
        msg_history = []
        papers_str = ""

        for j in range(max_num_iterations):
            try:
                text, msg_history = get_response_from_llm(
                    novelty_prompt.format(
                        current_round=j + 1,
                        num_rounds=max_num_iterations,
                        idea=idea,
                        last_query_results=papers_str,
                    ),
                    client=client,
                    model=model,
                    system_message=novelty_system_msg.format(
                        num_rounds=max_num_iterations,
                        task_description=task_description,
                        code=code,
                    ),
                    msg_history=msg_history,
                )
                if "decision made: novel" in text.lower():
                    print("Decision made: novel after round", j)
                    novel = True
                    break
                if "decision made: not novel" in text.lower():
                    print("Decision made: not novel after round", j)
                    break

                ## Format the content in JSON
                text = format_novelty_json(text)
                print("text after formating\n", text)
                ## PARSE OUTPUT
                json_output = extract_json_between_markers(text)
                assert json_output is not None, "Failed to extract JSON from LLM output"

                ## SEARCH FOR PAPERS
                query = json_output["Query"]
                papers = search_for_papers(query, result_limit=10)
                if papers is None:
                    papers_str = "No papers found."

                paper_strings = []
                for i, paper in enumerate(papers):
                    paper_strings.append(
                        """{i}: {title}. {authors}. {venue}, {year}.\nNumber of citations: {cites}\nAbstract: {abstract}""".format(
                            i=i,
                            title=paper["title"],
                            authors=paper["authors"],
                            venue=paper["venue"],
                            year=paper["year"],
                            cites=paper["citationCount"],
                            abstract=paper["abstract"],
                        )
                    )
                papers_str = "\n\n".join(paper_strings)

            except Exception as e:
                print(f"Error: {e}")
                continue

        idea["novel"] = novel

    # Save results to JSON file
    results_file = osp.join(base_dir, "ideas.json")
    with open(results_file, "w") as f:
        json.dump(ideas, f, indent=4)

    return ideas


if __name__ == "__main__":
    MAX_NUM_GENERATIONS = 32
    NUM_REFLECTIONS = 5
    import argparse

    parser = argparse.ArgumentParser(description="Generate AI scientist ideas")
    # add type of experiment (nanoGPT, Boston, etc.)
    parser.add_argument(
        "--experiment",
        type=str,
        default="nanoGPT",
        help="Experiment to run AI Scientist on.",
    )
    parser.add_argument(
        "--model",
        type=str,
        default="deepseek-ai/DeepSeek-V2.5",
        choices=allchoices,
        help="Model to use for AI Scientist.",
    )
    parser.add_argument(
        "--skip-idea-generation",
        action="store_true",
        help="Skip idea generation and use existing ideas.",
    )
    parser.add_argument(
        "--check-novelty",
        action="store_true",
        help="Check novelty of ideas.",
    )
    args = parser.parse_args()

    # Create client

    # ------------------------------------------------------------------------------------------------------
    
    if args.model == "Qwen/Qwen2.5-72B-Instruct":
        # elif args.model.startswith("hyperbolic"):
        print(f"Welcome to the PARADISE of debug <generate_scientist.py> {args.model}.")

        import openai
        import os
        # client_model = args.model[11:]
        client_model = args.model
        client = openai.OpenAI(
            api_key=os.environ["OPENAI_API_KEY"], base_url="https://api.hyperbolic.xyz/v1"
        )

    # ------------------------------------------------------------------------------------------------------

    
    elif args.model == "claude-3-5-sonnet-20240620":
        import anthropic

        print(f"Using Anthropic API with model {args.model}.")
        client_model = "claude-3-5-sonnet-20240620"
        client = anthropic.Anthropic()
    elif args.model.startswith("bedrock") and "claude" in args.model:
        import anthropic

        # Expects: bedrock/<MODEL_ID>
        client_model = args.model.split("/")[-1]

        print(f"Using Amazon Bedrock with model {client_model}.")
        client = anthropic.AnthropicBedrock()
    elif args.model == "gpt-4o-2024-05-13" or args.model == "hybrid":
        import openai

        print(f"Using OpenAI API with model {args.model}.")
        client_model = "gpt-4o-2024-05-13"
        client = openai.OpenAI()
    elif args.model == "deepseek-coder-v2-0724":
        import openai

        print(f"Using OpenAI API with {args.model}.")
        client_model = "deepseek-coder-v2-0724"
        client = openai.OpenAI(
            api_key=os.environ["DEEPSEEK_API_KEY"], base_url="https://api.hyperbolic.xyz/v1"
        )
    elif args.model == "llama3.1-405b":
        import openai

        print(f"Using OpenAI API with {args.model}.")
        client_model = "meta-llama/llama-3.1-405b-instruct"
        client = openai.OpenAI(
            api_key=os.environ["OPENROUTER_API_KEY"],
            base_url="https://openrouter.ai/api/v1",
        )
    elif args.model.startswith("ollama"):
        import openai

        print(f"Using Ollama with {args.model}.")
        client_model = args.model.split("/")[-1]
        # client_model = args.model
        client = openai.OpenAI(api_key="ollama", base_url="http://localhost:11434/v1")

    else:
        raise ValueError(f"Model {args.model} not supported.")

    base_dir = osp.join("templates", args.experiment)
    results_dir = osp.join("results", args.experiment)
    print("going into line 623...")
    ideas = generate_ideas(
        base_dir,
        client=client,
        model=client_model,
        skip_generation=args.skip_idea_generation,
        max_num_generations=MAX_NUM_GENERATIONS,
        num_reflections=NUM_REFLECTIONS,
    )
    if args.check_novelty:
        ideas = check_idea_novelty(
            ideas,
            base_dir=base_dir,
            client=client,
            model=client_model,
        )