File size: 5,966 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
import json
import os
import os.path as osp

# LOAD FINAL RESULTS:
datasets = ["shakespeare_char", "enwik8", "text8"]
folders = os.listdir("./")
final_results = {}
results_info = {}
for folder in folders:
    if folder.startswith("run") and osp.isdir(folder):
        with open(osp.join(folder, "final_info.json"), "r") as f:
            final_results[folder] = json.load(f)
        results_dict = np.load(osp.join(folder, "all_results.npy"), allow_pickle=True).item()
        run_info = {}
        for dataset in datasets:
            run_info[dataset] = {}
            val_losses = []
            train_losses = []
            for k in results_dict.keys():
                if dataset in k and "val_info" in k:
                    run_info[dataset]["iters"] = [info["iter"] for info in results_dict[k]]
                    val_losses.append([info["val/loss"] for info in results_dict[k]])
                    train_losses.append([info["train/loss"] for info in results_dict[k]])
                mean_val_losses = np.mean(val_losses, axis=0)
                mean_train_losses = np.mean(train_losses, axis=0)
                if len(val_losses) > 0:
                    sterr_val_losses = np.std(val_losses, axis=0) / np.sqrt(len(val_losses))
                    stderr_train_losses = np.std(train_losses, axis=0) / np.sqrt(len(train_losses))
                else:
                    sterr_val_losses = np.zeros_like(mean_val_losses)
                    stderr_train_losses = np.zeros_like(mean_train_losses)
                run_info[dataset]["val_loss"] = mean_val_losses
                run_info[dataset]["train_loss"] = mean_train_losses
                run_info[dataset]["val_loss_sterr"] = sterr_val_losses
                run_info[dataset]["train_loss_sterr"] = stderr_train_losses
        results_info[folder] = run_info

# CREATE LEGEND -- ADD RUNS HERE THAT WILL BE PLOTTED
labels = {
    "run_0": "Baseline",
    "run_1": "Multi-Style Adapter",
    "run_2": "Fine-tuned Multi-Style Adapter",
    "run_3": "Enhanced Style Consistency",
    "run_4": "Style Consistency Analysis",
}

# Create a programmatic color palette
def generate_color_palette(n):
    cmap = plt.get_cmap('tab20')
    return [mcolors.rgb2hex(cmap(i)) for i in np.linspace(0, 1, n)]

# Get the list of runs and generate the color palette
runs = list(labels.keys())
colors = generate_color_palette(len(runs))

# Plot 1: Line plot of training loss for each dataset across the runs with labels
for dataset in datasets:
    plt.figure(figsize=(10, 6))
    for i, run in enumerate(runs):
        iters = results_info[run][dataset]["iters"]
        mean = results_info[run][dataset]["train_loss"]
        sterr = results_info[run][dataset]["train_loss_sterr"]
        plt.plot(iters, mean, label=labels[run], color=colors[i])
        plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2)

    plt.title(f"Training Loss Across Runs for {dataset} Dataset")
    plt.xlabel("Iteration")
    plt.ylabel("Training Loss")
    plt.legend()
    plt.grid(True, which="both", ls="-", alpha=0.2)
    plt.tight_layout()
    plt.savefig(f"train_loss_{dataset}.png")
    plt.close()

# Plot 2: Line plot of validation loss for each dataset across the runs with labels
for dataset in datasets:
    plt.figure(figsize=(10, 6))
    for i, run in enumerate(runs):
        iters = results_info[run][dataset]["iters"]
        mean = results_info[run][dataset]["val_loss"]
        sterr = results_info[run][dataset]["val_loss_sterr"]
        plt.plot(iters, mean, label=labels[run], color=colors[i])
        plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2)

    plt.title(f"Validation Loss Across Runs for {dataset} Dataset")
    plt.xlabel("Iteration")
    plt.ylabel("Validation Loss")
    plt.legend()
    plt.grid(True, which="both", ls="-", alpha=0.2)
    plt.tight_layout()
    plt.savefig(f"val_loss_{dataset}.png")
    plt.close()

# Plot 3: Bar plot of style consistency scores for each dataset across the runs
plt.figure(figsize=(12, 6))
x = np.arange(len(datasets))
width = 0.8 / len(runs)

for i, run in enumerate(runs):
    means = []
    stds = []
    for dataset in datasets:
        if 'style_consistency_scores' in final_results[run][dataset].get('means', {}):
            means.append(final_results[run][dataset]['means']['style_consistency_scores'].get('mean_consistency', 0))
            stds.append(final_results[run][dataset].get('stderrs', {}).get('style_consistency_scores', {}).get('mean_consistency', 0))
        else:
            means.append(0)
            stds.append(0)
    plt.bar(x + i*width, means, width, label=labels[run], yerr=stds, capsize=5)

plt.xlabel('Dataset')
plt.ylabel('Style Consistency Score')
plt.title('Style Consistency Scores Across Runs and Datasets')
plt.xticks(x + width*(len(runs)-1)/2, datasets)
plt.legend()
plt.tight_layout()
plt.savefig("style_consistency_scores.png")
plt.close()

# Plot 4: Bar plot of inference speed for each dataset across the runs
plt.figure(figsize=(12, 6))
x = np.arange(len(datasets))
width = 0.8 / len(runs)

for i, run in enumerate(runs):
    means = []
    stds = []
    for dataset in datasets:
        if 'avg_inference_tokens_per_second_mean' in final_results[run][dataset]['means']:
            means.append(final_results[run][dataset]['means']['avg_inference_tokens_per_second_mean'])
            stds.append(final_results[run][dataset]['stderrs'].get('avg_inference_tokens_per_second_mean', 0))
        else:
            means.append(0)
            stds.append(0)
    plt.bar(x + i*width, means, width, label=labels[run], yerr=stds, capsize=5)

plt.xlabel('Dataset')
plt.ylabel('Tokens per Second')
plt.title('Inference Speed Across Runs and Datasets')
plt.xticks(x + width*(len(runs)-1)/2, datasets)
plt.legend()
plt.tight_layout()
plt.savefig("inference_speed.png")
plt.close()