File size: 30,166 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
import os
import time
import math
import pickle
import inspect
import json
from contextlib import nullcontext
from dataclasses import dataclass
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import argparse

# --- BEGIN model.py ---
class LayerNorm(nn.Module):
    """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False"""

    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)


class CausalSelfAttention(nn.Module):

    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        # regularization
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
        self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")
        if not self.flash:
            print(
                "WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0"
            )
            # causal mask to ensure that attention is only applied to the left in the input sequence
            self.register_buffer(
                "bias",
                torch.tril(torch.ones(config.block_size, config.block_size)).view(
                    1, 1, config.block_size, config.block_size
                ),
            )

    def forward(self, x):
        B, T, C = (
            x.size()
        )  # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=None,
                dropout_p=self.dropout if self.training else 0,
                is_causal=True,
            )
        else:
            # manual implementation of attention
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v  # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = (
            y.transpose(1, 2).contiguous().view(B, T, C)
        )  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return y


class MLP(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x


class StyleAdapter(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.linear = nn.Linear(config.n_embd, config.n_embd)

    def forward(self, x, style_emb):
        return x * self.linear(style_emb).unsqueeze(1)

class Block(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


@dataclass
class GPTConfig:
    block_size: int = 1024
    vocab_size: int = (
        50304  # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
    )
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768
    dropout: float = 0.0
    bias: bool = (
        True  # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
    )
    n_styles: int = 4  # number of styles for Multi-Style Adapter
    style_embd_dim: int = 64  # dimension of style embeddings


class GPT(nn.Module):

    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config

        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.vocab_size, config.n_embd),
                wpe=nn.Embedding(config.block_size, config.n_embd),
                drop=nn.Dropout(config.dropout),
                h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
                ln_f=LayerNorm(config.n_embd, bias=config.bias),
            )
        )
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        # with weight tying when using torch.compile() some warnings get generated:
        # "UserWarning: functional_call was passed multiple values for tied weights.
        # This behavior is deprecated and will be an error in future versions"
        # not 100% sure what this is, so far seems to be harmless. TODO investigate
        self.transformer.wte.weight = (
            self.lm_head.weight
        )  # https://paperswithcode.com/method/weight-tying

        # Multi-Style Adapter components
        self.style_embeddings = nn.Parameter(torch.randn(config.n_styles, config.style_embd_dim))
        self.style_proj = nn.Linear(config.style_embd_dim, config.n_embd)
        self.style_classifier = nn.Sequential(
            nn.Linear(config.n_embd, config.n_embd),
            nn.ReLU(),
            nn.Linear(config.n_embd, config.n_styles)
        )
        self.style_adapters = nn.ModuleList([StyleAdapter(config) for _ in range(config.n_layer)])

        # init all weights
        self.apply(self._init_weights)
        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith("c_proj.weight"):
                torch.nn.init.normal_(
                    p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)
                )

        # report number of parameters
        print("number of parameters: %.2fM" % (self.get_num_params() / 1e6,))

    def get_num_params(self, non_embedding=True):
        """
        Return the number of parameters in the model.
        For non-embedding count (default), the position embeddings get subtracted.
        The token embeddings would too, except due to the parameter sharing these
        params are actually used as weights in the final layer, so we include them.
        """
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding:
            n_params -= self.transformer.wpe.weight.numel()
        return n_params

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert (
            t <= self.config.block_size
        ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device)  # shape (t)

        # forward the GPT model itself
        tok_emb = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)
        pos_emb = self.transformer.wpe(pos)  # position embeddings of shape (t, n_embd)
        x = self.transformer.drop(tok_emb + pos_emb)

        style_logits = None
        for i, block in enumerate(self.transformer.h):
            x = block(x)
            style_logits = self.style_classifier(x[:, -1, :])  # Use last token for classification
            style_probs = F.softmax(style_logits, dim=-1)
            style_emb = (style_probs @ self.style_embeddings)  # Weighted sum of style embeddings
            style_emb = self.style_proj(style_emb)
            x = self.style_adapters[i](x, style_emb)

        x = self.transformer.ln_f(x)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.lm_head(x)
            loss = F.cross_entropy(
                logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
            )
        else:
            # inference-time mini-optimization: only forward the lm_head on the very last position
            logits = self.lm_head(
                x[:, [-1], :]
            )  # note: using list [-1] to preserve the time dim
            loss = None

        return logits, loss, style_logits

    def crop_block_size(self, block_size):
        # model surgery to decrease the block size if necessary
        # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
        # but want to use a smaller block size for some smaller, simpler model
        assert block_size <= self.config.block_size
        self.config.block_size = block_size
        self.transformer.wpe.weight = nn.Parameter(
            self.transformer.wpe.weight[:block_size]
        )
        for block in self.transformer.h:
            if hasattr(block.attn, "bias"):
                block.attn.bias = block.attn.bias[:, :, :block_size, :block_size]

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # start with all of the candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {"params": decay_params, "weight_decay": weight_decay},
            {"params": nodecay_params, "weight_decay": 0.0},
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        print(
            f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
        )
        print(
            f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
        )
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == "cuda"
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(
            optim_groups, lr=learning_rate, betas=betas, **extra_args
        )
        print(f"using fused AdamW: {use_fused}")

        return optimizer

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = (
                idx
                if idx.size(1) <= self.config.block_size
                else idx[:, -self.config.block_size :]
            )
            # forward the model to get the logits for the index in the sequence
            logits, _, _ = self(idx_cond)  # Ignore loss and style_logits
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float("Inf")
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx


# --- END model.py ---
def train(dataset="shakespeare_char", out_dir="run_0", seed_offset=0):
    # -----------------------------------------------------------------------------
    # default config values designed to train a gpt2 (124M) on OpenWebText
    # data
    gradient_accumulation_steps = 1
    batch_size = 64 if dataset == "shakespeare_char" else 32
    block_size = 256  # context of up to 256 previous characters
    # I/O
    eval_interval = 250 if dataset == "shakespeare_char" else 1000
    log_interval = 10 if dataset == "shakespeare_char" else 100
    eval_iters = 200
    eval_only = False  # if True, script exits right after the first eval
    always_save_checkpoint = (
        False  # we expect to overfit on this small dataset, so only save when val improves
    )
    never_save_checkpoint = True # never save checkpoints
    # model
    n_layer = 6  # baby GPT model :)
    n_head = 6
    n_embd = 384
    dropout = 0.2  # for pretraining 0 is good, for finetuning try 0.1+
    bias = False  # do we use bias inside LayerNorm and Linear layers?
    n_styles = 4  # number of styles for Multi-Style Adapter
    style_embd_dim = 64  # dimension of style embeddings
    # adamw optimizer
    learning_rate = (
        1e-3  if dataset == "shakespeare_char" else 5e-4
    )
    max_iters = 5000 if dataset == "shakespeare_char" else 100000
    weight_decay = 1e-1
    beta1 = 0.9
    beta2 = 0.99  # make a bit bigger because number of tokens per iter is small
    grad_clip = 1.0  # clip gradients at this value, or disable if == 0.0
    # learning rate decay settings
    decay_lr = True  # whether to decay the learning rate
    warmup_iters = 100 if dataset == "shakespeare_char" else 200
    lr_decay_iters = max_iters # make equal to max_iters usually
    min_lr = 1e-4 if dataset == "shakespeare_char" else 5e-5
    # DDP settings
    backend = "nccl"  # 'nccl', 'gloo', etc.
    # system
    device = "cuda"  # Always use CUDA
    dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
    compile = True  # do not torch compile the model on macbooks


    # various inits, derived attributes, I/O setup
    # if not ddp, we are running on a single gpu, and one process
    master_process = True
    tokens_per_iter = gradient_accumulation_steps * batch_size * block_size
    print(f"tokens per iteration will be: {tokens_per_iter:,}")

    if master_process:
        os.makedirs(out_dir, exist_ok=True)
    torch.manual_seed(1337 + seed_offset)
    torch.backends.cuda.matmul.allow_tf32 = True  # allow tf32 on matmul
    torch.backends.cudnn.allow_tf32 = True  # allow tf32 on cudnn
    device_type = "cuda" if "cuda" in device else "cpu"  # for later use in torch.autocast
    # note: float16 data type will automatically use a GradScaler
    ptdtype = {
        "float32": torch.float32,
        "bfloat16": torch.bfloat16,
        "float16": torch.float16,
    }[dtype]
    ctx = (
        nullcontext()
        if device_type == "cpu"
        else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
    )

    # poor man's data loader
    data_dir = os.path.join("../../../data", dataset)


    def get_batch(split):
        # We recreate np.memmap every batch to avoid a memory leak, as per
        # https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
        if split == "train":
            data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r")
        else:
            data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r")
        ix = torch.randint(len(data) - block_size, (batch_size,))
        x = torch.stack(
            [torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix]
        )
        y = torch.stack(
            [
                torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64))
                for i in ix
            ]
        )
        if device_type == "cuda":
            # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
            x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(
                device, non_blocking=True
            )
        else:
            x, y = x.to(device), y.to(device)
        return x, y

    iter_num = 0
    best_val_loss = 1e9

    # attempt to derive vocab_size from the dataset
    meta_path = os.path.join(data_dir, "meta.pkl")
    meta_vocab_size = None
    if os.path.exists(meta_path):
        with open(meta_path, "rb") as f:
            meta = pickle.load(f)
        meta_vocab_size = meta["vocab_size"]
        print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")

    # model init
    model_args = dict(
        n_layer=n_layer,
        n_head=n_head,
        n_embd=n_embd,
        block_size=block_size,
        bias=bias,
        vocab_size=None,
        dropout=dropout,
        n_styles=n_styles,
        style_embd_dim=style_embd_dim,
    )  # start with model_args from command line
    # init a new model from scratch
    print("Initializing a new model from scratch")
    # determine the vocab size we'll use for from-scratch training
    if meta_vocab_size is None:
        print(
            "defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)"
        )
    model_args["vocab_size"] = meta_vocab_size if meta_vocab_size is not None else 50304
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
    # crop down the model block size if desired, using model surgery
    if block_size < model.config.block_size:
        model.crop_block_size(block_size)
        model_args["block_size"] = (
            block_size  # so that the checkpoint will have the right value
        )
    model.to(device)

    # initialize a GradScaler. If enabled=False scaler is a no-op
    scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16"))

    # optimizer
    optimizer = model.configure_optimizers(
        weight_decay, learning_rate, (beta1, beta2), device_type
    )
    checkpoint = None  # free up memory

    # compile the model
    if compile:
        print("compiling the model... (takes a ~minute)")
        unoptimized_model = model
        model = torch.compile(model)  # requires PyTorch 2.0


    # helps estimate an arbitrarily accurate loss over either split using many batches
    @torch.no_grad()
    def estimate_loss():
        out = {}
        model.eval()
        for split in ["train", "val"]:
            losses = torch.zeros(eval_iters)
            for k in range(eval_iters):
                X, Y = get_batch(split)
                with ctx:
                    logits, loss, _ = model(X, Y)  # Ignore the style_logits
                losses[k] = loss.item()
            out[split] = losses.mean()
        model.train()
        return out


    # learning rate decay scheduler (cosine with warmup)
    def get_lr(it):
        # 1) linear warmup for warmup_iters steps
        if it < warmup_iters:
            return learning_rate * it / warmup_iters
        # 2) if it > lr_decay_iters, return min learning rate
        if it > lr_decay_iters:
            return min_lr
        # 3) in between, use cosine decay down to min learning rate
        decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
        assert 0 <= decay_ratio <= 1
        coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))  # coeff ranges 0..1
        return min_lr + coeff * (learning_rate - min_lr)


    # logging
    val_log_info = []
    train_log_info = []

    # training loop
    X, Y = get_batch("train")  # fetch the very first batch
    og_t0 = time.time()
    t0 = time.time()
    local_iter_num = 0  # number of iterations in the lifetime of this process
    raw_model = model
    while True:

        # determine and set the learning rate for this iteration
        lr = get_lr(iter_num) if decay_lr else learning_rate
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr

        # evaluate the loss on train/val sets and write checkpoints
        if iter_num % eval_interval == 0 and master_process:
            losses = estimate_loss()
            print(
                f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
            )
            val_log_info.append(
                {
                    "iter": iter_num,
                    "train/loss": losses["train"].item(),
                    "val/loss": losses["val"].item(),
                    "lr": lr,
                }
            )
            if losses["val"] < best_val_loss or always_save_checkpoint:
                best_val_loss = losses["val"]
                if iter_num > 0 and not never_save_checkpoint:
                    checkpoint = {
                        "model": raw_model.state_dict(),
                        "optimizer": optimizer.state_dict(),
                        "model_args": model_args,
                        "iter_num": iter_num,
                        "best_val_loss": best_val_loss,
                    }
                    print(f"saving checkpoint to {out_dir}")
                    torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt"))
        if iter_num == 0 and eval_only:
            break

        # forward backward update, with optional gradient accumulation to simulate larger batch size
        # and using the GradScaler if data type is float16
        for micro_step in range(gradient_accumulation_steps):
            with ctx:
                logits, loss, style_logits = model(X, Y)
                # Add style classification loss (assuming uniform distribution of styles)
                style_loss = F.cross_entropy(style_logits, torch.randint(0, n_styles, (X.size(0),), device=device))
                style_loss_weight = 0.1  # Adjust this weight to balance style adaptation and language modeling
                total_loss = loss + style_loss_weight * style_loss
                total_loss = total_loss / gradient_accumulation_steps  # scale the loss to account for gradient accumulation
            # immediately async prefetch next batch while model is doing the forward pass on the GPU
            X, Y = get_batch("train")
            # backward pass, with gradient scaling if training in fp16
            scaler.scale(total_loss).backward()
        # clip the gradient
        if grad_clip != 0.0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
        # step the optimizer and scaler if training in fp16
        scaler.step(optimizer)
        scaler.update()
        # flush the gradients as soon as we can, no need for this memory anymore
        optimizer.zero_grad(set_to_none=True)

        # timing and logging
        t1 = time.time()
        dt = t1 - t0
        t0 = t1
        if iter_num % log_interval == 0 and master_process:
            # get loss as float. note: this is a CPU-GPU sync point
            # scale up to undo the division above, approximating the true total loss (exact would have been a sum)
            lossf = total_loss.item() * gradient_accumulation_steps
            print(
                f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms"
            )
            train_log_info.append(
                {
                    "iter": iter_num,
                    "loss": lossf,
                    "time": dt*1000,
                }
            )
        iter_num += 1
        local_iter_num += 1

        # termination conditions
        if iter_num > max_iters:
            break

    print("training done")
    print(f"Best validation loss: {best_val_loss}")
    print(f"Total train time: {(time.time() - og_t0) / 60:.2f} mins")

    final_info = {
        "final_train_loss": lossf,
        "best_val_loss": best_val_loss.item(),
        "total_train_time": time.time() - og_t0,
    }

    # === SAMPLING SCRIPT ===

    # New parameters for generation
    start = " " 
    num_samples = 10  # number of samples to draw
    max_new_tokens = 500  # number of tokens generated in each sample
    temperature = 0.8  # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
    top_k = 200  # retain only the top_k most likely tokens, clamp others to have 0 probability

    # Encoding setup
    assert os.path.exists(meta_path), "meta.pkl not found, please run training script first"
    print(f"Loading meta from {meta_path}...")
    with open(meta_path, 'rb') as f:
        meta = pickle.load(f)
    stoi, itos = meta['stoi'], meta['itos']
    encode = lambda s: [stoi[c] for c in s]
    decode = lambda l: ''.join([itos[i] for i in l])

    # Encode the beginning of the prompt
    if start.startswith('FILE:'):
        with open(start[5:], 'r', encoding='utf-8') as f:
            start = f.read()
    start_ids = encode(start)
    x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])

    # Run generation
    model.eval()
    results = []
    with torch.no_grad():
        with ctx:
            for k in range(num_samples):
                start_time = time.time()
                y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
                end_time = time.time()
                
                generated_text = decode(y[0].tolist())
                inference_time = end_time - start_time
                tokens_per_second = max_new_tokens / inference_time
                
                print(f"Sample {k+1}:")
                print(generated_text)
                print(f"Inference time: {inference_time:.2f} seconds")
                print(f"Tokens per second: {tokens_per_second:.2f}")
                print('---------------')
                
                results.append({
                    "sample_id": k+1,
                    "generated_text": generated_text,
                    "inference_time": inference_time,
                    "tokens_per_second": tokens_per_second
                })

    # Calculate and print average inference speed
    avg_tokens_per_second = sum(r['tokens_per_second'] for r in results) / len(results)
    print(f"Average tokens per second: {avg_tokens_per_second:.2f}")

    final_info["avg_inference_tokens_per_second"] = avg_tokens_per_second

    with open(os.path.join(out_dir, f"final_info_{dataset}_{seed_offset}.json"), "w") as f:
        json.dump(final_info, f)
    return final_info, train_log_info, val_log_info

parser = argparse.ArgumentParser(description='Run experiment')
parser.add_argument('--out_dir', type=str, default='run_0', help='Output directory')
args = parser.parse_args()

if __name__ == "__main__":
    num_seeds = {
        "shakespeare_char": 3,
        "enwik8": 1,
        "text8": 1,
    }

    out_dir = args.out_dir
    all_results = {}
    final_infos = {}
    for dataset in ["shakespeare_char", "enwik8", "text8"]:
        final_info_list = []
        for seed_offset in range(num_seeds[dataset]):
            final_info, train_info, val_info = train(dataset, out_dir, seed_offset)
            all_results[f"{dataset}_{seed_offset}_final_info"] = final_info
            all_results[f"{dataset}_{seed_offset}_train_info"] = train_info
            all_results[f"{dataset}_{seed_offset}_val_info"] = val_info
            final_info_list.append(final_info)
        final_info_dict = {k: [d[k] for d in final_info_list] for k in final_info_list[0].keys()}
        means = {f"{k}_mean": np.mean(v) for k, v in final_info_dict.items()}
        stderrs = {f"{k}_stderr": np.std(v) / len(v) for k, v in final_info_dict.items()}
        final_infos[dataset] = {
            "means": means,
            "stderrs": stderrs,
            "final_info_dict": final_info_dict,
        }

    with open(os.path.join(out_dir, "final_info.json"), "w") as f:
        json.dump(final_infos, f)

    with open(os.path.join(out_dir, "all_results.npy"), "wb") as f:
        np.save(f, all_results)