File size: 30,166 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
import os
import time
import math
import pickle
import inspect
import json
from contextlib import nullcontext
from dataclasses import dataclass
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import argparse
# --- BEGIN model.py ---
class LayerNorm(nn.Module):
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False"""
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")
if not self.flash:
print(
"WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0"
)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x):
B, T, C = (
x.size()
) # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(
1, 2
) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(
1, 2
) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(
1, 2
) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
if self.flash:
# efficient attention using Flash Attention CUDA kernels
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.dropout if self.training else 0,
is_causal=True,
)
else:
# manual implementation of attention
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = (
y.transpose(1, 2).contiguous().view(B, T, C)
) # re-assemble all head outputs side by side
# output projection
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class StyleAdapter(nn.Module):
def __init__(self, config):
super().__init__()
self.linear = nn.Linear(config.n_embd, config.n_embd)
def forward(self, x, style_emb):
return x * self.linear(style_emb).unsqueeze(1)
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
self.attn = CausalSelfAttention(config)
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = (
50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
)
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.0
bias: bool = (
True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
)
n_styles: int = 4 # number of styles for Multi-Style Adapter
style_embd_dim: int = 64 # dimension of style embeddings
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=LayerNorm(config.n_embd, bias=config.bias),
)
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# with weight tying when using torch.compile() some warnings get generated:
# "UserWarning: functional_call was passed multiple values for tied weights.
# This behavior is deprecated and will be an error in future versions"
# not 100% sure what this is, so far seems to be harmless. TODO investigate
self.transformer.wte.weight = (
self.lm_head.weight
) # https://paperswithcode.com/method/weight-tying
# Multi-Style Adapter components
self.style_embeddings = nn.Parameter(torch.randn(config.n_styles, config.style_embd_dim))
self.style_proj = nn.Linear(config.style_embd_dim, config.n_embd)
self.style_classifier = nn.Sequential(
nn.Linear(config.n_embd, config.n_embd),
nn.ReLU(),
nn.Linear(config.n_embd, config.n_styles)
)
self.style_adapters = nn.ModuleList([StyleAdapter(config) for _ in range(config.n_layer)])
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith("c_proj.weight"):
torch.nn.init.normal_(
p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)
)
# report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params() / 1e6,))
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
The token embeddings would too, except due to the parameter sharing these
params are actually used as weights in the final layer, so we include them.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert (
t <= self.config.block_size
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
style_logits = None
for i, block in enumerate(self.transformer.h):
x = block(x)
style_logits = self.style_classifier(x[:, -1, :]) # Use last token for classification
style_probs = F.softmax(style_logits, dim=-1)
style_emb = (style_probs @ self.style_embeddings) # Weighted sum of style embeddings
style_emb = self.style_proj(style_emb)
x = self.style_adapters[i](x, style_emb)
x = self.transformer.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(
x[:, [-1], :]
) # note: using list [-1] to preserve the time dim
loss = None
return logits, loss, style_logits
def crop_block_size(self, block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert block_size <= self.config.block_size
self.config.block_size = block_size
self.transformer.wpe.weight = nn.Parameter(
self.transformer.wpe.weight[:block_size]
)
for block in self.transformer.h:
if hasattr(block.attn, "bias"):
block.attn.bias = block.attn.bias[:, :, :block_size, :block_size]
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
# Create AdamW optimizer and use the fused version if it is available
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas, **extra_args
)
print(f"using fused AdamW: {use_fused}")
return optimizer
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = (
idx
if idx.size(1) <= self.config.block_size
else idx[:, -self.config.block_size :]
)
# forward the model to get the logits for the index in the sequence
logits, _, _ = self(idx_cond) # Ignore loss and style_logits
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
# --- END model.py ---
def train(dataset="shakespeare_char", out_dir="run_0", seed_offset=0):
# -----------------------------------------------------------------------------
# default config values designed to train a gpt2 (124M) on OpenWebText
# data
gradient_accumulation_steps = 1
batch_size = 64 if dataset == "shakespeare_char" else 32
block_size = 256 # context of up to 256 previous characters
# I/O
eval_interval = 250 if dataset == "shakespeare_char" else 1000
log_interval = 10 if dataset == "shakespeare_char" else 100
eval_iters = 200
eval_only = False # if True, script exits right after the first eval
always_save_checkpoint = (
False # we expect to overfit on this small dataset, so only save when val improves
)
never_save_checkpoint = True # never save checkpoints
# model
n_layer = 6 # baby GPT model :)
n_head = 6
n_embd = 384
dropout = 0.2 # for pretraining 0 is good, for finetuning try 0.1+
bias = False # do we use bias inside LayerNorm and Linear layers?
n_styles = 4 # number of styles for Multi-Style Adapter
style_embd_dim = 64 # dimension of style embeddings
# adamw optimizer
learning_rate = (
1e-3 if dataset == "shakespeare_char" else 5e-4
)
max_iters = 5000 if dataset == "shakespeare_char" else 100000
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
# learning rate decay settings
decay_lr = True # whether to decay the learning rate
warmup_iters = 100 if dataset == "shakespeare_char" else 200
lr_decay_iters = max_iters # make equal to max_iters usually
min_lr = 1e-4 if dataset == "shakespeare_char" else 5e-5
# DDP settings
backend = "nccl" # 'nccl', 'gloo', etc.
# system
device = "cuda" # Always use CUDA
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
compile = True # do not torch compile the model on macbooks
# various inits, derived attributes, I/O setup
# if not ddp, we are running on a single gpu, and one process
master_process = True
tokens_per_iter = gradient_accumulation_steps * batch_size * block_size
print(f"tokens per iteration will be: {tokens_per_iter:,}")
if master_process:
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = "cuda" if "cuda" in device else "cpu" # for later use in torch.autocast
# note: float16 data type will automatically use a GradScaler
ptdtype = {
"float32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[dtype]
ctx = (
nullcontext()
if device_type == "cpu"
else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
)
# poor man's data loader
data_dir = os.path.join("../../../data", dataset)
def get_batch(split):
# We recreate np.memmap every batch to avoid a memory leak, as per
# https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
if split == "train":
data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r")
else:
data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r")
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack(
[torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix]
)
y = torch.stack(
[
torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64))
for i in ix
]
)
if device_type == "cuda":
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(
device, non_blocking=True
)
else:
x, y = x.to(device), y.to(device)
return x, y
iter_num = 0
best_val_loss = 1e9
# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, "meta.pkl")
meta_vocab_size = None
if os.path.exists(meta_path):
with open(meta_path, "rb") as f:
meta = pickle.load(f)
meta_vocab_size = meta["vocab_size"]
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
# model init
model_args = dict(
n_layer=n_layer,
n_head=n_head,
n_embd=n_embd,
block_size=block_size,
bias=bias,
vocab_size=None,
dropout=dropout,
n_styles=n_styles,
style_embd_dim=style_embd_dim,
) # start with model_args from command line
# init a new model from scratch
print("Initializing a new model from scratch")
# determine the vocab size we'll use for from-scratch training
if meta_vocab_size is None:
print(
"defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)"
)
model_args["vocab_size"] = meta_vocab_size if meta_vocab_size is not None else 50304
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
# crop down the model block size if desired, using model surgery
if block_size < model.config.block_size:
model.crop_block_size(block_size)
model_args["block_size"] = (
block_size # so that the checkpoint will have the right value
)
model.to(device)
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16"))
# optimizer
optimizer = model.configure_optimizers(
weight_decay, learning_rate, (beta1, beta2), device_type
)
checkpoint = None # free up memory
# compile the model
if compile:
print("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model) # requires PyTorch 2.0
# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
with ctx:
logits, loss, _ = model(X, Y) # Ignore the style_logits
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
# logging
val_log_info = []
train_log_info = []
# training loop
X, Y = get_batch("train") # fetch the very first batch
og_t0 = time.time()
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
raw_model = model
while True:
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group["lr"] = lr
# evaluate the loss on train/val sets and write checkpoints
if iter_num % eval_interval == 0 and master_process:
losses = estimate_loss()
print(
f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
val_log_info.append(
{
"iter": iter_num,
"train/loss": losses["train"].item(),
"val/loss": losses["val"].item(),
"lr": lr,
}
)
if losses["val"] < best_val_loss or always_save_checkpoint:
best_val_loss = losses["val"]
if iter_num > 0 and not never_save_checkpoint:
checkpoint = {
"model": raw_model.state_dict(),
"optimizer": optimizer.state_dict(),
"model_args": model_args,
"iter_num": iter_num,
"best_val_loss": best_val_loss,
}
print(f"saving checkpoint to {out_dir}")
torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt"))
if iter_num == 0 and eval_only:
break
# forward backward update, with optional gradient accumulation to simulate larger batch size
# and using the GradScaler if data type is float16
for micro_step in range(gradient_accumulation_steps):
with ctx:
logits, loss, style_logits = model(X, Y)
# Add style classification loss (assuming uniform distribution of styles)
style_loss = F.cross_entropy(style_logits, torch.randint(0, n_styles, (X.size(0),), device=device))
style_loss_weight = 0.1 # Adjust this weight to balance style adaptation and language modeling
total_loss = loss + style_loss_weight * style_loss
total_loss = total_loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
# immediately async prefetch next batch while model is doing the forward pass on the GPU
X, Y = get_batch("train")
# backward pass, with gradient scaling if training in fp16
scaler.scale(total_loss).backward()
# clip the gradient
if grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0 and master_process:
# get loss as float. note: this is a CPU-GPU sync point
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
lossf = total_loss.item() * gradient_accumulation_steps
print(
f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms"
)
train_log_info.append(
{
"iter": iter_num,
"loss": lossf,
"time": dt*1000,
}
)
iter_num += 1
local_iter_num += 1
# termination conditions
if iter_num > max_iters:
break
print("training done")
print(f"Best validation loss: {best_val_loss}")
print(f"Total train time: {(time.time() - og_t0) / 60:.2f} mins")
final_info = {
"final_train_loss": lossf,
"best_val_loss": best_val_loss.item(),
"total_train_time": time.time() - og_t0,
}
# === SAMPLING SCRIPT ===
# New parameters for generation
start = " "
num_samples = 10 # number of samples to draw
max_new_tokens = 500 # number of tokens generated in each sample
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
# Encoding setup
assert os.path.exists(meta_path), "meta.pkl not found, please run training script first"
print(f"Loading meta from {meta_path}...")
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
stoi, itos = meta['stoi'], meta['itos']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# Encode the beginning of the prompt
if start.startswith('FILE:'):
with open(start[5:], 'r', encoding='utf-8') as f:
start = f.read()
start_ids = encode(start)
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
# Run generation
model.eval()
results = []
with torch.no_grad():
with ctx:
for k in range(num_samples):
start_time = time.time()
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
end_time = time.time()
generated_text = decode(y[0].tolist())
inference_time = end_time - start_time
tokens_per_second = max_new_tokens / inference_time
print(f"Sample {k+1}:")
print(generated_text)
print(f"Inference time: {inference_time:.2f} seconds")
print(f"Tokens per second: {tokens_per_second:.2f}")
print('---------------')
results.append({
"sample_id": k+1,
"generated_text": generated_text,
"inference_time": inference_time,
"tokens_per_second": tokens_per_second
})
# Calculate and print average inference speed
avg_tokens_per_second = sum(r['tokens_per_second'] for r in results) / len(results)
print(f"Average tokens per second: {avg_tokens_per_second:.2f}")
final_info["avg_inference_tokens_per_second"] = avg_tokens_per_second
with open(os.path.join(out_dir, f"final_info_{dataset}_{seed_offset}.json"), "w") as f:
json.dump(final_info, f)
return final_info, train_log_info, val_log_info
parser = argparse.ArgumentParser(description='Run experiment')
parser.add_argument('--out_dir', type=str, default='run_0', help='Output directory')
args = parser.parse_args()
if __name__ == "__main__":
num_seeds = {
"shakespeare_char": 3,
"enwik8": 1,
"text8": 1,
}
out_dir = args.out_dir
all_results = {}
final_infos = {}
for dataset in ["shakespeare_char", "enwik8", "text8"]:
final_info_list = []
for seed_offset in range(num_seeds[dataset]):
final_info, train_info, val_info = train(dataset, out_dir, seed_offset)
all_results[f"{dataset}_{seed_offset}_final_info"] = final_info
all_results[f"{dataset}_{seed_offset}_train_info"] = train_info
all_results[f"{dataset}_{seed_offset}_val_info"] = val_info
final_info_list.append(final_info)
final_info_dict = {k: [d[k] for d in final_info_list] for k in final_info_list[0].keys()}
means = {f"{k}_mean": np.mean(v) for k, v in final_info_dict.items()}
stderrs = {f"{k}_stderr": np.std(v) / len(v) for k, v in final_info_dict.items()}
final_infos[dataset] = {
"means": means,
"stderrs": stderrs,
"final_info_dict": final_info_dict,
}
with open(os.path.join(out_dir, "final_info.json"), "w") as f:
json.dump(final_infos, f)
with open(os.path.join(out_dir, "all_results.npy"), "wb") as f:
np.save(f, all_results)
|