File size: 14,824 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
"""
python iclr_analysis.py --num_reviews 500  --batch_size 50 --num_fs_examples 0 --num_reflections 5 --temperature 0.1 --num_reviews_ensemble 5
"""

import sys

sys.path.append("../")

import argparse
import multiprocessing as mp
import os
import pathlib
import time

import numpy as np
import pandas as pd
import requests
from sklearn.metrics import confusion_matrix, f1_score, roc_auc_score
from sklearn.utils import shuffle

from ai_scientist.llm import allchoices
from ai_scientist.perform_review import (
    load_paper,
    neurips_form,
    perform_review,
    reviewer_system_prompt_neg,
)


def parse_arguments():
    parser = argparse.ArgumentParser(description="Run AI reviewer experiments")
    parser.add_argument(
        "--model",
        type=str,
        default="gpt-4o-2024-05-13",
        choices=allchoices,
        help="Model to use for AI Scientist.",
    )

    parser.add_argument(
        "--num_reviews",
        type=int,
        default=20,
        help="Number of reviews to generate.",
    )

    parser.add_argument(
        "--num_reflections",
        type=int,
        default=3,
        help="Number of reviews to generate.",
    )

    # add argument for few shot prompting
    parser.add_argument(
        "--num_fs_examples",
        type=int,
        default=2,
        help="Number of model reviews",
    )

    # add review ensembling
    parser.add_argument(
        "--num_reviews_ensemble",
        type=int,
        default=1,
        help="Number of model reviews to ensemble.",
    )

    # batch size for evals with mp
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1,
        help="Review batchsize.",
    )
    # pages to extract from pdf
    parser.add_argument(
        "--num_paper_pages",
        type=int,
        default=0,
        help="Paper pages to extract from pdf (0 - all).",
    )

    parser.add_argument(
        "--temperature",
        type=float,
        default=0.75,
        help="GPT temperature.",
    )
    return parser.parse_args()


# Create a new dataframe that stores the LLM reviews
llm_cols = [
    "paper_id",
    "Summary",
    "Questions",
    "Limitations",
    "Ethical Concerns",
    "Soundness",
    "Presentation",
    "Contribution",
    "Overall",
    "Confidence",
    "Strengths",
    "Weaknesses",
    "Originality",
    "Quality",
    "Clarity",
    "Significance",
    "Decision",
]


def prep_open_review_data(
    ratings_path="ratings_subset.tsv",
    data_seed=1,
    balanced_val=False,
    num_reviews=-1,
):
    # papers = pd.read_csv(os.path.join(folder_path, "paperlist.tsv"), sep="\t")
    # ratings = pd.read_csv(
    #     os.path.join(folder_path, "ratings.tsv"), sep="\t", index_col=0
    # )
    ratings = pd.read_csv(ratings_path, sep="\t", index_col=0)
    # Filter out papers that have an "Unknown" decision
    ratings = ratings[ratings["decision"] != "Unknown"]

    # compute mean over all ratings columns 0 to 6 in df for each row without nan
    avg = np.nanmean(ratings[["0", "1", "2", "3", "4", "5", "6"]], axis=1)
    ratings["mean"] = avg
    # Paper links: https://openreview.net/pdf?id=RAW9tCdVxLj
    # Add https://openreview.net/pdf?id= to the paper_id index colum
    ratings["url"] = "https://openreview.net/pdf?id=" + ratings.index
    ratings["paper_id"] = ratings.index
    # Add paper title to ratings df
    # ratings = ratings.join(papers.set_index("paper_id")[["title"]])

    ratings["simplified_decision"] = ratings["decision"].apply(
        lambda x: (
            "Accept"
            if x == "Accept (Oral)"
            or x == "Accept (Poster)"
            or x == "Accept (Spotlight)"
            else "Reject"
        )
    )
    ratings = shuffle(ratings, random_state=data_seed)
    ratings.drop_duplicates(inplace=True)
    # Select 50% accept and 50% reject from all papers - only for meta evo
    # Drop first 500 papers used for final evaluation
    # Weird indexing since some papers/discussions don't seem to be available
    # on OpenReview any more
    if balanced_val:
        ratings = (
            ratings[900:]
            .groupby("simplified_decision")
            .apply(lambda x: x.sample(n=int(num_reviews / 2), random_state=data_seed))
        )
        ratings = shuffle(ratings, random_state=data_seed)
        ratings = ratings.set_index("paper_id")
    return ratings


def get_perf_metrics(llm_ratings, ore_ratings):
    try:
        llm_ratings = llm_ratings.set_index("paper_id")
    except Exception:
        pass

    num_llm_reviews = llm_ratings.shape[0]
    # Get overall accuracy of decisions made by gpt
    correct = 0
    y_pred = []
    y_true = []
    for i in range(num_llm_reviews):
        name = llm_ratings.iloc[i].name
        if (
            llm_ratings["Decision"].loc[name]
            == ore_ratings["simplified_decision"].loc[name]
        ):
            correct += 1

        y_pred.append(llm_ratings["Decision"].loc[name] == "Accept")
        y_true.append(ore_ratings["simplified_decision"].loc[name] == "Accept")

    accuracy = correct / num_llm_reviews
    accuracy = round(accuracy, 2)
    f1 = round(f1_score(y_true, y_pred), 2)
    try:
        roc = round(roc_auc_score(y_true, y_pred), 2)
        tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
        fpr = fp / (fp + tn)
        fnr = fn / (fn + tp)

    except Exception:
        roc = 0
        fpr, fnr = 0, 0

    return accuracy, f1, roc, fpr, fnr


def download_paper_pdf(url, paper_id, verbose=True):
    # make path for paper pdf
    if not os.path.exists("iclr_papers"):
        os.makedirs("iclr_papers", exist_ok=True)
    # Download pdf and write to file
    paper_pdf = os.path.join("iclr_papers", f"{paper_id}.pdf")
    if not os.path.exists(paper_pdf):
        response = requests.get(url)
        with open(paper_pdf, "wb") as f:
            f.write(response.content)
        if verbose:
            print(f"Downloaded {paper_pdf}")
    else:
        if verbose:
            print(f"File {paper_pdf} already exists")
    return paper_pdf


def review_single_paper(
    idx,
    model,
    ore_ratings,
    llm_ratings,
    num_reflections,
    num_fs_examples,
    num_reviews_ensemble,
    temperature,
    reviewer_system_prompt,
    review_instruction_form,
    num_paper_pages,
):
    # Setup client for LLM model
    if model == "claude-3-5-sonnet-20240620":
        import anthropic

        client = anthropic.Anthropic()
    elif model.startswith("bedrock") and "claude" in model:
        import anthropic

        model = model.split("/")[-1]
        client = anthropic.AnthropicBedrock()
    elif args.model.startswith("vertex_ai") and "claude" in args.model:
        import anthropic

        # Expects: vertex_ai/<MODEL_ID>
        model = args.model.split("/")[-1]
        client = anthropic.AnthropicVertex()
    elif model in [
        "gpt-4o-2024-05-13",
        "gpt-4o-mini-2024-07-18",
        "gpt-4o-2024-08-06",
    ]:
        import openai

        client = openai.OpenAI()
    elif model == "deepseek-coder-v2-0724":
        import openai

        client = openai.OpenAI(
            api_key=os.environ["DEEPSEEK_API_KEY"], base_url="https://api.deepseek.com"
        )
    elif model == "llama-3-1-405b-instruct":
        import openai

        client = openai.OpenAI(
            api_key=os.environ["OPENROUTER_API_KEY"],
            base_url="https://openrouter.ai/api/v1",
        )
    elif args.model.startswith("ollama"):
        import openai

        client = openai.OpenAI(
            api_key="ollama",
            base_url="http://localhost:11434/v1",
        )
    else:
        raise ValueError(f"Model {model} not supported.")

    rating = ore_ratings.iloc[idx]
    if rating.name in llm_ratings.index:
        print(f"{idx}: Review for {rating.name} already exists")
        return {"idx": idx, "review": None}
    try:
        txt_path = f"iclr_parsed/{rating.name}.txt"
        if not os.path.exists(txt_path):
            pdf_path = download_paper_pdf(rating.url, rating.name, verbose=False)
            text = load_paper(pdf_path, num_pages=num_paper_pages)
            with open(txt_path, "w") as f:
                f.write(text)
        else:
            with open(txt_path, "r") as f:
                text = f.read()
    except Exception as e:
        print(f"Error loading PDF: {e}")
        return {"idx": idx, "review": None}

    try:
        llm_review = perform_review(
            text,
            model,
            client,
            num_reflections,
            num_fs_examples,
            num_reviews_ensemble,
            temperature,
            reviewer_system_prompt=reviewer_system_prompt,
            review_instruction_form=review_instruction_form,
        )
    except Exception as e:
        print(f"Error in worker: {e}")
        return {"idx": idx, "review": None}

    return {"idx": idx, "review": llm_review}


def worker(
    input_queue,
    output_queue,
):
    while True:
        inputs = input_queue.get()
        if inputs is None:
            break
        result = review_single_paper(*inputs)
        output_queue.put(result)


def open_review_validate(
    num_reviews,
    model,
    rating_fname,
    batch_size,
    num_reflections,
    num_fs_examples,
    num_reviews_ensemble,
    temperature,
    reviewer_system_prompt,
    review_instruction_form,
    num_paper_pages=None,
    data_seed=1,
    balanced_val=False,
):
    ore_ratings = prep_open_review_data(
        data_seed=data_seed,
        balanced_val=balanced_val,
        num_reviews=num_reviews,
    )
    # Try loading llm ratings file otherwise create new one
    try:
        llm_ratings = pd.read_csv(rating_fname, index_col="paper_id")
        print(f"Loaded existing LLM reviews dataframe: {rating_fname}")
    except FileNotFoundError:
        # Set index name of a pandas dataframe
        llm_ratings = pd.DataFrame(columns=llm_cols)
        llm_ratings.set_index("paper_id", inplace=True)
        print(f"Created new LLM reviews dataframe: {rating_fname}")

    num_review_batches = num_reviews // batch_size
    paper_id = 0
    start_time_total = time.time()
    for i in range(num_review_batches):
        print(f"Start batch: {i + 1} / {num_review_batches}")
        # Track time used for each review - Collect evals for batch of papers
        start_time = time.time()
        batch_idx = np.arange(paper_id, paper_id + batch_size)

        # Set up queues for multiprocessing
        input_queue = mp.Queue()
        output_queue = mp.Queue()
        processes = []
        for _ in range(batch_size):
            p = mp.Process(target=worker, args=(input_queue, output_queue))
            p.start()
            processes.append(p)

        for idx in batch_idx:
            input_queue.put(
                [
                    idx,
                    model,
                    ore_ratings,
                    llm_ratings,
                    num_reflections,
                    num_fs_examples,
                    num_reviews_ensemble,
                    temperature,
                    reviewer_system_prompt,
                    review_instruction_form,
                    num_paper_pages,
                ]
            )
        for _ in range(batch_size):
            input_queue.put(None)

        # Collect results from the output queue
        llm_reviews = []
        for _ in range(batch_size):
            llm_reviews.append(output_queue.get())

        # Ensure all processes have finished
        for p in processes:
            p.join()

        # Check if all llm_cols are in the llm generated review
        for i_x in range(batch_size):
            idx = llm_reviews[i_x]["idx"]
            review = llm_reviews[i_x]["review"]
            if review is not None:
                correct_review = sum([k in review for k in llm_cols[1:]]) == len(
                    llm_cols[1:]
                )
                if correct_review:
                    rating = ore_ratings.iloc[idx]
                    # Add the reviews to the rankings dataframe as a new row
                    llm_ratings.loc[rating.name] = review
                    llm_ratings.to_csv(rating_fname)
                    acc, f1, roc, fpr, fnr = get_perf_metrics(llm_ratings, ore_ratings)
                    print(
                        f"{i_x + 1}/{batch_size}:",
                        "Paper:",
                        f"{rating['mean']:.2f}",
                        rating["decision"],
                        rating["simplified_decision"],
                        "===== LLM:",
                        review["Overall"],
                        review["Decision"],
                        f" - acc: {acc} - f1: {f1} - auc: {roc}",
                    )
                else:
                    print(f"{i + 1}/{batch_size}: Review is incomplete.")
                    continue
            else:
                continue

        # Format string so that only two decimals are printed
        print(
            f"End batch: {i + 1} / {num_review_batches} : Time used: {(time.time() - start_time):.2f}s"
        )
        print(75 * "=")
        paper_id += batch_size
    acc, f1, roc, fpr, fnr = get_perf_metrics(llm_ratings, ore_ratings)
    print(f"Final Accuracy / F1 / AUC of LLM decisions: {acc} / {f1} / {roc}")
    print(f"Final FPR / FNR of LLM decisions: {fpr} / {fnr}")
    print(f"Total time used: {((time.time() - start_time_total) / 60):.2f}min")
    return llm_ratings, ore_ratings


if __name__ == "__main__":
    args = parse_arguments()
    # Create client - float temp as string
    temperature = str(args.temperature).replace(".", "_")
    rating_fname = f"llm_reviews/{args.model}_temp_{temperature}"
    pathlib.Path("llm_reviews/").mkdir(parents=True, exist_ok=True)

    if args.num_fs_examples > 0:
        rating_fname += f"_fewshot_{args.num_fs_examples}"

    if args.num_reflections > 1:
        rating_fname += f"_reflect_{args.num_reflections}"

    if args.num_reviews_ensemble > 1:
        rating_fname += f"_ensemble_{args.num_reviews_ensemble}"

    num_paper_pages = None if args.num_paper_pages == 0 else args.num_paper_pages
    if num_paper_pages is not None:
        rating_fname += f"_pages_{num_paper_pages}"
    else:
        rating_fname += "_pages_all"

    # Settings for reviewer prompt
    reviewer_system_prompt = reviewer_system_prompt_neg
    reviewer_form_prompt = neurips_form
    rating_fname += ".csv"

    open_review_validate(
        args.num_reviews,
        args.model,
        rating_fname,
        args.batch_size,
        args.num_reflections,
        args.num_fs_examples,
        args.num_reviews_ensemble,
        args.temperature,
        reviewer_system_prompt,
        reviewer_form_prompt,
        num_paper_pages,
        balanced_val=False,
    )