File size: 78,966 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
# FINITE-TIME CONVERGENCE AND SAMPLE COM## PLEXITY OF MULTI-AGENT ACTOR-CRITIC REIN- FORCEMENT LEARNING WITH AVERAGE REWARD


Hairi and Jia Liu
Department of Electrical and Computer Engineering
The Ohio State University
Columbus, OH 43210, USA
hairi.1@osu.edu, liu@ece.osu.edu

ABSTRACT


Songtao Lu
IBM Research AI
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598
songtao@ibm.com


In this paper, we establish the first finite-time convergence result of the actor-critic
algorithm for fully decentralized multi-agent reinforcement learning (MARL)
problems with average reward. In this problem, a set of N agents work cooperatively to maximize the global average reward through interacting with their
neighbors over a communication network. We consider a practical MARL setting, where the rewards and actions of each agent are only known to itself, and the
knowledge of joint actions of the agents is not assumed. Toward this end, we propose a mini-batch Markovian sampled fully decentralized actor-critic algorithm
and analyze its finite-time convergence and sample complexity. We show that the
sample complexity of this algorithm is O(N [2]/ǫ[2] log(N/ǫ)). Interestingly, this
sample complexity bound matches that of the state-of-the-art single-agent actorcritic algorithms for reinforcement learning.

1 INTRODUCTION

1) Background and Motivations: In recent years, multi-agent reinforcement learning (MARL)
has found a wide range of applications in networked large-scale systems, such as power grid systems (Riedmiller et al., 2000), autonomous driving (Yu et al., 2019; Shalev-Shwartz et al., 2016)
and strategic games (Silver et al., 2018; Foerster et al., 2018), to name just a few. Although empirical successes of MARL applications have been widely observed, the fundamental theoretical
understanding of how to develop fast-converging and low sample-complexity MARL algorithms,
two of the most important performance metrics for MARL, remains in its infancy so far (see, e.g.,
(Zhang et al., 2021a) for an excellent survey). In particular, two important aspects of cooperative
MARL algorithm designs deserve special attention:

-  First, in the multi-agent collaborative setting, the information structure (i.e., the assumptions of
who have the knowledge of what) is far more complex than its single-agent counterpart and care
must be taken in MARL problem formulations. In the cooperative MARL literature so far, many
existing works assume full knowledge of joint states and joint actions, which often do not hold
true in practice. For example, in autonomous driving (Yu et al., 2019), each vehicle can only
observe/detect the actions of the surrounding vehicles that are within its communication range.
As another example, in power grid networks (Riedmiller et al., 2000), each power distributor
generally does not know the resistor values set by other distributors.

-  Second, most MARL theoretical studies in the MARL literature are focused on the discounted
total reward setting, where a hyperparameter γ ∈ (0, 1) is introduced as the discount factor in the
objective function. Although the discounted total reward setting captures the important aspect of
diminishing return in the future, it may not be appropriate for many other applications where the
long-term average reward is of interest. For example, in the optimization of distributed communication networks with MARL, the typical and natural performance metrics are long-term average
throughput or latency in the steady-state.
The lack of a fundamental understanding on how to develop efficient cooperative MARL algorithms
that consider the above two aspects in terms of information structure, scalability, and communication


-----

and sample complexities motivates us to fill this gap by developing a fully decentralized cooperative
MARL algorithm in the average reward setting, without assuming joint action knowledge.

2) Technical Challenges: Developing a fully decentralized cooperative MARL algorithm for the
average reward setting without full joint action knowledge is highly non-trivial and several major
technical challenges naturally arise. First, it is well-known that, even in the single-agent reinforcement learning (RL) setting, the average reward setting is more challenging to analyze compared to
the discounted reward setting, which necessitates different proof techniques (Tsitsiklis & Van Roy,
1999). In MARL, the decentralized nature and the lack of joint action-state information further
complicate the algorithm design and analysis in the average reward setting. Second, due to the lack
of joint action knowledge, the communication costs among agents in MARL will be significantly
increased to achieve a satisfying performance, which implies that low sample and communication
complexities are even more challenging and critical for MARL without joint action information.

3) Main Results and Contributions: The main contribution of this paper is that we overcome the
aforementioned challenges and develop a consensus-based Markovian sampled decentralized actorcritic algorithm for MARL. Our key results in this paper are summarized as follows:

-  We propose a batch-sampled actor-critic algorithm that uses consensus updates in TD-sharing
among agents. This batch sampling approach enables more efficient communication compared
to the classical fully decentralized MARL. Specifically, in order to converge to an ǫ neighborhood of the stationary, we require O(ǫ[−][1] log(ǫ[−][1])) rounds of communication while only needing
O(ǫ[−][2] log(ǫ[−][1])) samples. By contrast, the state-of-the-art MARL requires a communication
round per sampling. Also, our algorithm allows the use of constant step-sizes in both the actor
and the critic steps.

-  We provide the first-ever sample complexity analysis in the MARL average reward problem setting without joint action information. Our obtained complexity is O(ǫ[−][2] log(ǫ[−][1])), where ǫ is the
closeness to the neighborhood of stationary point (treating network size N as a fixed constant).
It is worth noting that the order-wise sample complexity of our algorithm matches that of the
state-of-the-art single-agent RL algorithms.

2 RELATED WORK

In this section, we provide a quick overview on the closely related work on MARL algorithms and
their theoretical results, along with several notable related counterparts in single-agent RL.

1) MARL Theoretical Analysis and Algorithm Design: For recent advances in MARL algorithms
and their theoretical results, Zhang et al. (2021a) provided a comprehensive survey. Also, Lee et al.
(2020) highlighted the evolution from single-agent to multi-agent RL from a distributed optimization
perspective. In the broader area of MARL, a line of research has been focused on the MARL policy
evaluation problem. These works analyzed the convergence Doan et al. (2019) and proposed various variance reduction of policy evaluation in decentralized MARL algorithms Zhang et al. (2021b).
Doan et al. (2019) used i.i.d. sampling and has shown the sample complexity of O[˜](ǫ[−][1]) for their
TD(0) learning algorithm to reach a mean-square error convergence. However, these algorithms do
not involve policy improvement and solely focus on the performance evaluation of given policies. In
the areas of joint policy evaluation and improvement, Foerster et al. (2018) considered multi-agent
actor-critic algorithm that has a centralized critic and decentralized actors, which is different from
our fully decentralized actor-critic algorithm. In contrast, Zhang et al. (2018) established asymptotic convergence results for fully decentralized MARL actor-critic algorithms. Concurrent with
our work, Chen et al. (2021) has recently studied the mini-batch Markovian sampling actor-critic
algorithm for a class of discounted reward MARL problems, where the finite-time convergence result is obtained. They have applied batch sampling for both actor and critic steps and achieved a
sample complexity of O(ǫ[−][2] log(ǫ[−][1])), which is the same as ours. We note that, together with our
work, these are the first finite-time convergence results for MARL. However, there are several key
differences between our work and (Chen et al., 2021). First, we focus on the average reward problem, while Chen et al. (2021) studied the discounted reward setting. Second, in (Chen et al., 2021),
agents share a noisy version of the rewards with the neighbors, which requires a re-sampling process
from every sampled reward instance. In contrast, we allow agents to share local TD-errors with their
neighbors and no re-sampling is required.


-----

Table 1: Comparison of sample complexity of single-agent (SA) and multi-agent (MA) AC algorithms and TD(0) algorithms at Average Reward (AR) and Discounted Reward (DR) settings.

|Paper|Problem|Sampling|Col4|Sample Complexity|
|---|---|---|---|---|
|||actor step|critic step||
|Qiu et al. (2021)|SAAR|i.i.d.|Markovian|O(ǫ−3 log2(ǫ−1))|
|Xu et al. (2020)|SADR|Markovian|Markovian|O(ǫ−2 log(ǫ−1))|
|Zhang et al. (2018)|MAAR|Markovian|Markovian|Asymptotic|
|Doan et al. (2019)|MADR|N/A|i.i.d|O˜(ǫ−1)|
|Chen et al. (2021)|MADR|Markovian|Markovian|O(ǫ−2 log(ǫ−1))|
|This paper|MAAR|Markovian|Markovian|O(N 2/ǫ2 log(N/ǫ))|



2) Related Literature in Single-Agent RL: We note that single-agent RL can be viewed as a
centralized approach, where a central controller collects joint actions, rewards and even designs
policies for agents. For the single-agent average reward setting, Tsitsiklis & Van Roy (1999) first
analyzed the asymptotic convergence of TD(λ) algorithm with function approximations in the policy
evaluation problem. Also, Tsitsiklis & Van Roy (2002) provided insights in terms of differences and
connections between average reward and discounted reward of TD-based learning algorithms with
function approximations. Recently, Qiu et al. (2021) analyzed the sample complexity for an actorcritic algorithm for the average reward problem. In their actor-critic algorithm, they used batch
sampling for the critic learning and i.i.d. sampling for the actor step, with sample complexity being
O(ǫ[−][3] log[2](ǫ[−][1])). By applying mini-batch sampling update, we are able to improve the sample
complexity by a factor of O(ǫ[−][1]). Another closely related work on single-agent RL is (Xu et al.,
2020), where the authors studied the discounted reward problem. They used batch sampling for both
actor and critic steps in their actor-critic algorithm and developed a new technique to handle bias
error in the critic step, which we also adopted for the average approximation parameter analysis in
our critic step. This achieved the state-of-the-art sample complexity of O(ǫ[−][2] log(ǫ[−][1])) for singleagent RL. In addition, the global convergence of actor-critic algorithm to the optimal policy has
been studied in the case of discounted setting with single time scale in (Fu et al., 2020) and linear
quadratic regulator in (Yang et al., 2019). However, we note that these settings are fundamentally
different from the average reward setting and it will be an interesting future direction to consider
global convergence possibility in the average reward setting.

To conclude this section, we summarize the aforementioned related actor-critic and TD algorithms
and their sample complexity results in Table 1.

3 MULTI-AGENT REINFORCEMENT LEARNING WITH AVERAGE REWARD

3.1 SYSTEM MODEL

Consider a multi-agent system with N agents, denoted by N = {1, · · ·, N }, operating in a networked environment. Let E be the edge set for a given network G = (N, E). To formulate our
MARL problem and facilitate our subsequent discussions, we first define the notion of networked
multi-agent MDP as follows.
Definition 1 (Networked Multi-Agent MDP). Let G = (N, E) be a communication network that connects N agents. A networked multi-agent MDP is defined by following tuple
(S, {A[i]}i∈N, P, {R[i]}i∈N, G), where S is the global state space observed by all agents, A[i] is the
action set for agent i, and P : S ×A×S → [0, 1] is a global state transition function, and R[i] : S ×A
is the local reward function for agent i. Let A = i∈N [A][i][ be the joint action set of all agents.]

In this paper, we assume that the global state space S and action space for agent A[i] are finite. As

[Q]

a result, the joint action space A is also finite for finite N . We also note that at time t ≥ 0, all
agents can observe the current global state st. However, agent i can only observe its own action
a[i]t [∈A][i][, which is the key difference between our model and that in (Zhang et al., 2018), where it is]
assumed that the joint actions are observable to all agents. Moreover, each agent can only observe
its own reward rt[i][, i.e., agents do not observe or share rewards with other agents at time][ t][. The]


-----

reward function R[i](s, a) is an expectation given s and a, and the instantaneous reward is denoted
by r[i](s, a), i.e., R[i](s, a) = E[r[i](s, a)].

We consider policies that are stationary. In our MARL system, each agent chooses its action following its local policy π[i] that is conditioned on the current global state s, i.e., π[i](a[i]|s) is the probability
for agent i to choose an action a[i] ∈A[i]. Then, the joint policy π : S × A → [0, 1] can be written as
π(a|s) = i∈N [π][i][(][a][i][|][s][)][.]

Moreover, the policies at the agents are parameterized. Specifically, each agent i’s local policy can
be written as[Q] πθ[i] [i][, where][ θ][i][ ∈] [R][m][i][ denotes the parameter. We let][ θ][ ≜] [[(][θ][1][)][T][,][ · · ·][,][ (][θ][N] [)][T][ ]][T][ ∈]
N
RPi=1 [m][i] . Then, we can write the joint policy as follows: πθ(a|s) = i∈N [π][θ][i] [(][a][i][|][s][)][.]

3.2 TECHNICAL ASSUMPTIONS [Q]

We now state the following assumptions on the positivity and continuity of πθ[i] [i] [(][a][i][|][s][)][, which guar-]
antee the stationary distribution of {st} under any given policy.
Assumption 1. For any i ∈N, s ∈S, a[i] ∈A[i] and θ[i] ∈ R[m][i], the policy function πθ[i] [i][(][a][i][|][s][)][ ≥] [0][.]
Also, πθ[i] [i][(][s, a][)][ is a continuously differentiable with respect to the parameter][ θ][i][. In addition, for]
any θ, we assume the induced Markov chain {st}t≥0 is irreducible and aperiodic, and its transition
matrix P [θ] is P [θ](s[′]|s) = a∈A [π][θ][(][a][|][s][)][ ·][ P] [(][s][′][|][s, a][)][,] ∀s, s[′] ∈S.

Assumption 1 guarantees that the states have a stationary distribution dθ(s) over S given any policy

[P]

πθ. As a result, the Markov chain of state action pair {(st, at)} also has a stationary distribution
dθ(s) · πθ(a|s).
Assumption 2. The instantaneous reward rt[i] [is uniformly bounded by a constant][ r][max] [>][ 0][ for any]
i ∈N and t ≥ 0.

Assumption 2 is common in the literature (see, e.g., (Zhang et al., 2018; Xu et al., 2020; Doan et al.,
2019)) and easy to be satisfied in many practical MDP models with finite state and action spaces.
Assumption 3. Let A be a consensus weight matrix for a given communication network G. There
exists a positive constant η > 0 such that A ∈ R[N] [×][N] is doubly stochastic and Aii ≥ η, ∀i ∈N .
Moreover, Aij ≥ η if i, j are connected, otherwise Aij = 0 for all i, j.

Assumption 3 is standard in the distributed multi-agent optimization literature Nedic & Ozdaglar
(2009). We remark that for a practical choice of A, one can use the following form A =
1

deg(G) [(][deg][(][G][)][ ·][ I][ −] [L][)][,][ where deg][(][G][)][ is the degree of the graph][ G][ (i.e. the maximal vertex de-]
gree), I is the identity matrix of conforming dimensionality, and L is the Laplacian matrix of the
graph. It is easy to verify that this matrix is symmetric, doubly stochastic and η ≥ deg1(G) [≥] N[1] [.]

Assumption 4. Each agent i’s value function is parameterized by the class of linear functions, i.e.,
Vθ(s; w) = φ(s)[T] w where φ(s) ≜ [φ1(s), · · ·, φK (s)][T] ∈ R[K] is the feature associated with the
state s ∈S and K < |S|. The feature vectors φ(s) are uniformly bounded for any s ∈S. Without
loss of generality, we assume that ∥φ(s)∥≤ 1. Furthermore, the feature matrix Φ ∈ R[|S|×][K] has
full column rank. Also, for any u ∈ R[K], Φu ̸= 1, where 1 is an all-one vector.

This assumption on features is standard and has been widely adopted in the literature, e.g.,
(Tsitsiklis & Van Roy, 1999; Zhang et al., 2018; Qiu et al., 2021). This assumption implies the following property: for any policy πθ, the inequality w[T] Aπθ w < 0 holds for any w ̸= 0, where Aπθ is
defined as

Aπθ := Es∼dθ(s),s′∼P (·|s)[(φ(s[′]) − φ(s))φ[T] (s)]. (1)

This property further implies that for all θ, Aπθ is invertible and λmax(Aπθ + A[T]πθ [)][ <][ 0][ (Qiu et al.,]
2021), where λmax(·) is the largest eigenvalues of the matrix.
Assumption 5. There exists a constant λA > 0 such that λmax(Aπθ + A[T]πθ [)][ ≤−][λ][A] [holds for all]
θ ∈ RPi∈N [m][i] .

Assumption 5 ensures the optimal approximation wθ[∗] [for any given policy][ π][θ][ is uniformly bounded]
(see discussion before Theorem 2 and Lemma 4).


-----

Assumption 6. Let ψθ(s, a) = ∇θ log πθ(a|s) be the score function for any state-action pair (s, a).
For any two policy parameters θ, θ[′] ∈ RPi∈N [m][i], and any state-action pair (s, a) ∈S×A, there exist
positive constants such that the following hold: 1): ∥ψθ(s, a)∥≤ Cψ; 2): ∥∇θJ(θ) −∇θJ(θ[′])∥≤
LJ ∥θ − θ[′]∥; where J(θ) is defined in (2) and ∥· ∥ denotes the ℓ2-norm.

Assumption 6 says that the score function is uniformly bounded for any policy and the gradient of
the objective function has a Lipschitz property with respect to the policy parameter. This assumption
has also been adopted in the analysis of the single-agent actor-critic algorithm in (Qiu et al., 2021).
We note that for the discounted reward problem, this gradient Lipschitz property can be guaranteed
through (Xu et al., 2020, Assumption 2). We note that Assumption 6 can be satisfied by the class of
soft-max policy under the Assumption 1, as in (Guo et al., 2021).

3.3 THE OBJECTIVE FUNCTION

The goal of the agents is to find a joint policy πθ to maximize the global average long-term reward.
Mathematically, this can be written as:


T −1

t=0

X


πθ(a|s) · R[¯](s, a), (2)
a∈A

X


rt[i]+1
i∈N

X


maximizeθ J(θ) = lim
T →∞


T [E]


dθ(s)
s∈S

X


where R[¯](s, a) = N1 i∈N [R][i][(][s, a][)][ is the global average reward function. Let][ ¯]rt = N1 i∈N [r]t[i][,]

then we have R[¯](s, a) = E[¯rt+1|st = s, at = a]. Next, we define the state-action value

P P

function: Qθ(s, a) = E[[P][∞]t=0 r[¯]t+1 − J(θ)|s0 = s, a0 = a, πθ], and the state value function
Vθ(s) = a∈A [Q][θ][(][s, a][)][ ·][ π][θ][(][a][|][s][)][.][ The advantage function is defined as follows:]

Advθ(s, a) = Qθ(s, a) − Vθ(s). (3)

[P]

3.4 POLICY GRADIENT THEOREM

The gradient of a policy πθ for decentralized policy gradient is stated in the following theorem.
Theorem 1 (Policy Gradient Theorem for MARL (Zhang et al., 2018)). For any θ, let πθ : S ×A →

[0, 1] be a policy and let J(θ) be the global average long-term average return defined in (2). Then,
the gradient of J(θ) with respect to parameter θ[i] can be computed as:

∇θi J(θ) = Es∼dθ,a∼πθ [∇θi log πθ[i] [i] [(][a][i][|][s][)][ ·][ Adv][θ][(][s, a][)]][.] (4)

4 A CONSENSUS-BASED ACTOR-CRITIC ALGORITHM

In this section, we propose a consensus-based actor-critic algorithm that includes two key steps:
actor and critic. In the critic step, the algorithm evaluates the value functions for the policy πθt at
time t. After the critic step, the algorithm enters the actor step, which improves the policy parameter
θt according to the direction from policy gradient as shown in Theorem 1. In both steps, we use
constant step-sizes and adopt batch sampling.

In this paper, we use linear function approximations for the value functions. Specifically, each agent
i has a parameter w[i] ∈ R[K] to approximate the global value functions Vθ(s; w[i]) for each state s ∈S.
For linear approximation, we have Vθ(s; w[i]) = φ(s)[T] w[i], where φ(s) ∈ R[K] denotes the feature for
state s. As a result, the gradient of value function at state s with respect to approximation parameter
w[i] is φ(s), i.e. ∇wVθ(s; w[i]) = φ(s).

1) The Critic Step: The critic step is achieved through its own oracle, which is summarized in
Algorithm 1. In the critic step, we allow the agents to communicate the approximation parameters
w(s) with their neighbors via the communication network with consensus weight matrix A. For
agent i ∈N, the parameter is locally updated by following rules:

µ[i]k,τ +1 [= (1][ −] [β][)][µ]k,τ[i] [+][ βr]k,τ[i] +1 (5)

δk,τ[i] [=][ r]k,τ[i] +1 [−] [µ]k,τ[i] [+][ φ][T][ (][s][k,τ] [+1][)][w]k[i] [−] [φ][T][ (][s][k,τ] [)][w]k[i] (6)


-----

Algorithm 1: Mini-batch TD learning for Critic

Input : s0, πθt, φ, step-size β, critic step iteration number K, critic batch size M, the
communication network A

1 for k = 0, · · ·, Kc − 1 do

2 sk,0 = sk−1,M ( when k = 0, sk,0 = s0);

3 for all i ∈N do

4 for τ = 0, · · ·, M − 1 do

5 Execute action a[i]k,τ [∼] [π]θ[i] t[i] [(][·|][s][k,τ] [)][;]

6 Observe the state sk,τ +1 and reward rk,τ[i] +1[;]

7 Update µ[i]k,τ +1 [←] [(1][ −] [β][)][ ·][ µ]k,τ[i] [+][ β][ ·][ r]k,τ[i] +1[;]

8 Update δk,τ[i] [←] [r]k,τ[i] +1 [−] [µ]k,τ[i] [+][ φ][T][ (][s][k,τ] [+1][)][w]k[i] [−] [φ][T][ (][s][k,τ] [)][w]k[i] [;]

9 end


M −1

10 Critic Step: ˜wk[i] [←] [w]k[i] [+][ β]M τ =0 [δ]k,τ[i] [·][ φ][(][s][k,τ] [)][;]

11 Consensus Update wk[i] +1 [←] P[P]j∈Ni [A][(][i, j][)][ ·][ ˜]wk[j] [;]

12 end

13 end
Output: sKc−1,M, wKc


M −1

δk,τ[i] [·][ φ][(][s][k,τ] [)][,] (7)
τ =0

X


w˜k[i] [=][ w]k[i] [+][ β]

M


where β > 0 is the step-size of the critic step, µ[i]k,τ [is the estimate of the long-term return of]
agent i, and δk,τ[i] [is the local TD-error for agent][ i][ at iteration][ k][ using sample][ τ] [. Here, in each]
iteration k in the critic step, the approximation parameter is locally updated through a batch of
sampling as in (7), where the batch size is M . Then, agent i will further update the approximation
parameter w[i] through a weighted average of its local and neighboring agents’ parameters as follows:
wk[i] +1 [=][ P]j∈Ni [A][(][i, j][) ˜]wk[i] [.][ This batched sampling update continues for][ K][c][ iterations for each given]
policy πθt.

2) The Actor Step: As shown in Theorem 1, the advantage function needs to be known to compute
the gradient. However, from the definition in (3), the joint action a also has to be known to compute
the advantage function, whereas in our model, each agent can only observe its own action. As a
result, an estimation of the advantage function is required. Here, we show that the global TD-error
is an unbiased estimate of the advantage function.

At time t, suppose we have samples st, at, st+1 and the rewards {rt[i]+1[}][i][∈N] [then the advantage]
function is as follows: Advθ(st, at) = E[¯rt+1 − J(θ) + Vθ(St+1) − Vθ(st)|st, at], and the global
TD-error can be computed as follows: δt = ¯rt+1 − µt + Vθ(st+1) − Vθ(st), where µt+1 = (1 −
α) · µt + α · ¯rt+1 is the estimate for the average long term return, and α is the step-size for the actor
step. Hence, we have that the expected global TD-error is the advantage function, i.e., E[δt|st, at] =
Aθ(st, at). Thus, we can use this global TD-error as an unbiased estimate of the advantage function.
For agent i, the local TD-error can be computed as δt[i] [=][ r]t[i]+1 [−] [µ]t[i] [+][ V][θ][(][s][t][+1][)][ −] [V][θ][(][s][t][)][, where]
µ[i]t+1 [= (1][ −] [α][)][µ]t[i] [+][ αr]t[i]+1[. We also note that][ µ][t] [=][ 1]N i∈N [µ]t[i] [.]

Thus, once each agent knows the global TD-error, the policy parameter can be updated according toP
the policy gradient rule in (4). However, without any communication, each agent only has the knowledge of its own local TD-error. Moreover, we will show that the networked TD-error is actually the
average of the local TD-errors. Specifically,


δt = ¯rt+1 − µt + Vθ(st+1) − Vθ(st) = [1]


rt[i]+1 [−] [1]

N

i∈N

X


µ[i]t [+][ V][θ][(][s][t][+1][)][ −] [V][θ][(][s][t][)]
i∈N

X


= [1]



[rt[i]+1 [−] [µ]t[i] [+][ V][θ][(][s][t][+1][)][ −] [V][θ][(][s][t][)] = 1]

N

i∈N

X


δt[i][.]
i∈N

X


-----

Algorithm 2: Minibatch-TD sharing for Actor Critic Algorithm

Input : state feature matrix Φ, actor step-size α, Initial parameters θi for all i ∈N

1 for t = 0, · · ·, T − 1 do

2 critic update: wt, st,0 = Minibatch-TD-critic in Algorithm 1;

3 for l = 0, · · ·, B − 1 do

4 for all i ∈N do

5 Execute action a[i]t,l [∼] [π]θ[i] t[i] [(][·|][s][t,l][)][;]

6 Observe the state st,l+1 and reward rt,l[i] +1[;]

7 Update µ[i]t,l+1 [←] [(1][ −] [α][)][ ·][ µ]t,l[i] [+][ α][ ·][ r]t,l[i] +1[;]

8 Update δt,l[i] [←] [r]t,l[i] +1 [−] [µ]t,l[i] [+][ φ][T][ (][s][t,l][+1][)][w]t[i] [−] [φ][T][ (][s][t,l][)][w]t[i][;]

9 Update ψt,l[i] [←∇][θ][i][ log][ π]θ[i] t[i][(][s][t,l][, a]t,l[i] [)][;]

10 end

11 end

δt,[1] 0 -  · · δt,[N]0
. .

12 Let ∆0 =  .. ... .. ;

δt,B[1] −1 -  · · δt,B[N] −1

 

13 for i ∈N do 

14 for k = 0 : tgossip − 1 do

15 ∆k+1(:, i) ← [P]j∈Ni [A][(][i, j][)][ ·][ ∆][k][(:][, j][)][;]

16 end

17 end


18 for all i ∈N do

19 Let δ[˜]t,[i] 1:B−1 [= ∆][t]gossip [(:][, i][)][ ;]

B−1

20 Actor Step: θt[i]+1 [←] [θ]t[i] [+][ α]B l=0 δ[˜]t,l[i] [·][ ψ]t,l[i] [;]

21 end

P

22 end
Output: θ ˆT [with][ ˆ]T chosen uniformly from {1, · · ·, T }


For any time t, the average of the local TD-errors is an unbiased estimate of the advantage function.
Therefore, we just need to let each agent communicate with its neighbors so that an average of all
local TD-errors can be reached or estimated for all agents.

From the results in (Nedic & Ozdaglar, 2009), we have limτ →∞ A[τ] (x[1], · · ·, x[N] )[T] =
1

N i∈N [x][i][1][. However, this convergence is asymptotic, meaning that the exact estimation can]
only be achieved with infinite iterations (i.e., τ →∞). In practice, since one can only apply fiP
nite iterations, we use δ[˜]t[i] [to denote the estimate of the global TD-error maintained by agent][ i][ after]
tgossip iterations of updates at time t, i.e., δ[˜]t[i] [= [][A][t][gossip] []][i][∆]t[0][, where][ ∆][0]t [= (][δ]t[1][,][ · · ·][, δ]t[N] [)][T][ is the][ N] [-]
dimension vector of local TD-errors at time t. We note that agents do not need to know the weight
information of other agents. Rather, each agent just needs to exchange updated estimate of the local TD-errors with its neighbors for tgossip rounds as shown in Lines 11-16 of Algorithm 2. This
communication among agents is also done in a batch fashion, with batch size being B. This implies
that for each outer iteration t ∈{0 · · ·, T − 1}, only tgossip rounds of communication for every B
samples are needed.

Combined with a B-batched Markovian sampling, the parameter θ[i] update for agent i ∈N can be
written as follows: θt[i]+1 [=][ θ]t[i] [+][ α]B Bl=0−1 δ[˜]t,l[i] [·][ ψ]t,l[i] [where][ α][ is the step-size for the actor step and]

ψt,l[i] [=][ ∇][θ][i][ log][ π]θ[i] t[i][(][s][t,l][, a]t,l[i] [)][ is the local score function for agent]P [ i][ using][ l][-th sample at time][ t][. The]
actor step of our algorithm is illustrated in Algorithm 2.


-----

5 THEORETICAL CONVERGENCE ANALYSIS

In this section, we present the convergence results for both the critic and actor steps in Theorems 2
and 3, respectively. Due to space limitation, we relegate the proofs to the supplementary material.

5.1 CONVERGENCE ANALYSIS FOR CRITIC (ALGORITHM 1)

For a given policy πθ, we define bπθ = Es∼dθ,a∼πθ [φ(s)(¯r(s, a) − J(θ))], where ¯r(s, a) =
1

N i∈N [r][i][(][s, a][)][ and][ J][(][θ][)][ are as defined in (2). For all agents, the optimal solution (Wu et al.,]

2020), (Qiu et al., 2021) of this critic learning is wθ[∗] [=][ −][A]π[−]θ[1][b][π]θ [, where][ A][π]θ [is defined as in (1).]

P

The invertiblity of Aπθ is due to the Assumptions 1 and 4 (see more details in (Qiu et al., 2021;
Tsitsiklis & Van Roy, 1999)). Then, the convergence of the critic step is summarized as follows:
Theorem 2 (Convergence and Sample Complexity of the Critic). Suppose that Assumptions 1-5
hold. For any given policy πθ, consider the iteration generated by Algorithm 1. Recall the definition
of λA in the Assumption 5 and let β < min{ 2(1η−[N]η[−][N][1][−][1]) [,][ λ]128[A] [,] λ4A [}][. It then follows that:]

N

E[ ||wK[i] c [−] [w]θ[∗][||][2][]][ ≤] [κ][′]1[N][ 4][γ][2][K][c][ +][ κ][′′]2 [N][ 6][β][2][ +][ κ][3][N][ 5][γ][K][c] [β]

i=1

X


+ 2N (1 − [λ][A] w0 − wθ[∗][||][2]2 [+][ κ][4] (8)

8 [β][)][K][c] [||][ ¯] M [N,]

where γ := (1−η[N] [−][1])·(1+2β) < 1 and κ[′]1[, κ]2[′′][, κ][3][, κ][4] [are positive constants. If we further let][ K][c] [≥]

12 [max][{][log][γ][−][1][ 6][κ]1[′]ǫ[N][ 4], log(1− λA8 [β][)][−][1] 12N || ¯w0ǫ−wθ[∗][||][2]2 }, β ≤ min{ N[1][3] 6κǫ[′′]2 [,] 2(1η−[N]η[−][N][1][−][1]) [,][ λ]128[A] [,] λ4A [}]

6κ4N
and M ≥ ǫ, then we have E[[P][N]i=1 [||][w]K[i] c [−] [w]θ[∗][||][2][]][ ≤] [ǫ][ for all]q[ i][ ∈N][ with total sample]

complexity given by KcM = O( [N]ǫ [log(][ N]ǫ [))][.]

Theorem 2 establishes a convergence result for the policy evaluation of a given policy πθ. We can
see that our constant step-size batch-sampled critic process can achieve the same complexity of
O˜(ǫ[−][1]) order-wise as the TD(0) learning in Doan et al. (2019), where diminishing step-sizes were
used. On the other hand, in the single agent average reward setting of Qiu et al. (2021), there exists
a non-vanishing error term in their critic convergence. In contrast, with proper choices of iteration
number Kc and batch size M, our mean-square error can be arbitrarily small.

5.2 CONVERGENCE ANALYSIS FOR ACTOR-CRITIC ALGORITHM (ALGORITHM 2)

Define the approximation error introduced by using linear approximation in the critic step, ξapprox[critic] [=]
maxθ∈RPi∈N [mi][ E][s][∼][d][θ] [[][|][V][π][θ] [(][s][)][ −] [V][w]πθ[∗] [(][s][)][|][2][]][. For a given policy][ π][θ][, this error represents the gap]
between ground truth value function under such policy and the value function obtained by the best
possible linear approximation. Such an error term is standard in the literature where linear approximations are adopted (Qiu et al., 2021; Xu et al., 2020). Let Rw, defined in Lemma 4, be an upper
bound on ||wθ|| for all policy parameter θ.
Theorem 3 (Overall Convergence Rate and Sample Complexity). Suppose that Assumption 1-6
hold. Consider the actor-critic algorithm in Algorithm 2. Let step-size α = 4L1J [. It then holds that:]


T N
t=1 i=1 [||][w]t[i] [−] [w]θ[∗]t [||][2]

E[||∇θJ(θ ˜T [)][||][2][]][ ≤] [16][L][J] [r][max] + 72N + 18κ3N [3](1 − η[N] [−][1])[2][t][gossip]

T T

P P

+ 72ξapprox[critic] [+ 288(][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]] N, (9)

B(1 − ρ)


, B ≥ 576 [(][r][max][+2][R][w](1[)]−[2][[1+(2]ρ) [κ][−][1)][ρ][]]


where κ3 is a positive constant. Furthermore, let T ≥ [64][L][J]ǫ[r][max]


and the communication round among the agents tgossip ≥ [1]2 [log][(1][−][η][N] [−][1][)][−][1][ 64][κ]ǫ[3][N][ 3] . Suppose for the

same setting as in Theorem 1 holds so that E[[P][N]i=1 [||][w]K[i] c [−] [w]θ[∗][||][2][]][ ≤] 288ǫ N [for all][ 0][ ≤] [t][ ≤]

T, then we have E[||∇θJ(θt)||[2]] ≤ ǫ + O(ξapprox[critic] [)][,][ with a total complexity of][ (][B][ +][ MK][c][)][T][ =]

O( [N]ǫ[2][ 2][ log(][ N]ǫ [))][. And the communication complexity is][ (][K][c][ +][ t][gossip][)][T][ =][ O][(][ 1]ǫ [log(][ N]ǫ [))][.]


-----

(a) System size N = 6. (b) System size N = 10. (c) System size N = 15.

Figure 1: Our TD-sharing algorithm vs classical MARL algorithm.

Theorem 3 concludes the overall sample complexity of our proposed actor-critic algorithm. The
sample complexity of O(ǫ[−][2] log(ǫ[−][1])) matches the state-of-the-art single-agent actor-critic RL by
Xu et al. (2020) and the discounted MARL by Chen et al. (2021).

We note that the overall communication complexity also matches that of (Chen et al., 2021) in the
discounted reward setting. However, our work is still an improvement compared to the classical
MARL in Zhang et al. (2018) for the average reward setting. Specifically, Zhang et al. (2018) needed
a communication round after each sampling. By contrast, in this paper, we only need a communication round per O(ǫ[−][1]) sampling. This is thanks to the use of batch sampling in the actor step. Also
because of the batch sampling, we are able to use a constant step-size for both actor and critic steps.
Here, the overall communication cost is measured by the number of communication rounds rather
than the size of bits transmitted over the network. We follow the standard definition of communication complexity in the literature, which is widely adopted in the literature, see (Chen et al., 2018)
(Zhang et al., 2019). However, we note that tgossip, actor step batch size B and critic iteration rounds
Kc, scale with O(log 1/ǫ), O(1/ǫ) and O(log 1/ǫ) respectively as indicated in the Theorem 3 and
2. The amount of information (in terms of bits) is (KcNK + BNtgossip)T = O( ǫ[N][2][ log][ N]ǫ [)][.]

6 EXPERIMENTAL RESULTS

In this section, we conduct experiments to compare our proposed consensus-based TD-sharing
MARL algorithm with the most related MARL algorithm 1 in Zhang et al. (2018) that also studied average reward. To our knowledge, this is the only work that is directly comparable to ours. The
key difference is that the knowledge of joint action is assumed in Zhang et al. (2018), but not in our
work. We vary the system size from N = 6, 10 to 15. The blue curve is our TD-sharing algorithm
and the red curve is classical MARL algorithm in Zhang et al. (2018). The curves represent the
average results of 10 trials and the 95% confidence intervals are also plotted. For the details, see A.1
in Appendix. The results in Figure 1 show that for different system sizes, both algorithms converge
to a reasonable objective value. Note that if we use uniformly random policy as the baseline policy,
then the objective values will be around 2 due to the setting of our experiments. All simulation
results are above this threshold and our TD-sharing algorithm converge to a better objective value.
See Section A.2 for addition experiment results.

7 CONCLUSION AND DISCUSSION

In this paper, we studied fully decentralized MARL in average reward setting and proposed a
batch-sampled actor-critic algorithm. Our main contribution is to establish the first finite time convergence result for fully decentralized MARL in average reward setting, where the complexity is
O(ǫ[−][2] log(ǫ[−][1])), which matches that of the state-of-the-art single agent RL. The algorithm reaches
such convergence with a better communication efficiency. However, it is still in the preliminary
stage of the convergence analysis of the MARL since we only used the vanilla average. The future
direction will be how to design a more scalable algorithm in terms of system size.


-----

ACKNOWLEDGMENTS

Hairi and Jia Liu’s work has been supported in part by NSF grants CAREER CNS-2110259, CNS2112471, CNS-2102233, CCF-2110252, and a Google Faculty Research Award.

REFERENCES

Rajendra Bhatia. Matrix analysis, volume 169 of. Graduate texts in mathematics, 1997.

Tianyi Chen, Georgios B Giannakis, Tao Sun, and Wotao Yin. Lag: Lazily aggregated gradient for
communication-efficient distributed learning. arXiv preprint arXiv:1805.09965, 2018.

Ziyi Chen, Yi Zhou, Rongrong Chen, and Shaofeng Zou. Sample and communication-efficient
decentralized actor-critic algorithms with finite-time analysis. arXiv preprint arXiv:2109.03699,
2021.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed td (0) with linear
function approximation on multi-agent reinforcement learning. In International Conference on
Machine Learning, pp. 1626–1635. PMLR, 2019.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. arXiv preprint arXiv:2008.00483, 2020.

Xin Guo, Anran Hu, and Junzi Zhang. Theoretical guarantees of fictitious discount algorithms
for episodic reinforcement learning and global convergence of policy gradient methods. arXiv
preprint arXiv:2109.06362, 2021.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003.

Donghwan Lee, Niao He, Parameswaran Kamalaruban, and Volkan Cevher. Optimization for reinforcement learning: From a single agent to cooperative agents. IEEE Signal Processing Magazine,
37(3):123–135, 2020.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathematical Soc., 2017.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On finite-time convergence of actorcritic algorithm. IEEE Journal on Selected Areas in Information Theory, 2(2):652–664, 2021.

Martin Riedmiller, Andrew Moore, and Jeff Schneider. Reinforcement learning for cooperating and
communicating reactive agents in electrical power grids. In Workshop on Balancing Reactivity
and Social Deliberation in Multi-Agent Systems, pp. 137–149. Springer, 2000.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

John N Tsitsiklis and Benjamin Van Roy. Average cost temporal-difference learning. Automatica,
35(11):1799–1808, 1999.

John N Tsitsiklis and Benjamin Van Roy. On average versus discounted reward temporal-difference
learning. Machine Learning, 49(2):179–191, 2002.


-----

Yue Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite time analysis of two time-scale actor
critic methods. arXiv preprint arXiv:2005.01350, 2020.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural)
actor-critic algorithms. arXiv preprint arXiv:2004.12956, 2020.

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. On the global convergence of actor-critic: A case for linear quadratic regulator with ergodic cost. arXiv preprint
arXiv:1907.06246, 2019.

Chao Yu, Xin Wang, Xin Xu, Minjie Zhang, Hongwei Ge, Jiankang Ren, Liang Sun, Bingcai Chen,
and Guozhen Tan. Distributed multiagent coordinated learning for autonomous driving in highways based on dynamic coordination graphs. IEEE Transactions on Intelligent Transportation
Systems, 21(2):735–748, 2019.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multiagent reinforcement learning with networked agents. In International Conference on Machine
Learning, pp. 5872–5881. PMLR, 2018.

Kaiqing Zhang, Zhuoran Yang, and Tamer Bas¸ar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321–384, 2021a.

Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth S Bentley. Compressed distributed gradient
descent: Communication-efficient consensus over networks. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pp. 2431–2439. IEEE, 2019.

Xin Zhang, Zhuqing Liu, Jia Liu, Zhengyuan Zhu, and Songtao Lu. Taming communication and
sample complexities in decentralized policy evaluation for cooperative multi-agent reinforcement
learning. In Advances Neural Information Processing Systems (NeurIPS), Virtual Event, December 2021b.

A APPENDIX

In this section, we provide lemmas that lead to the proof of both Theorem 2 and Theorem 3.

In this paper, we use || · || for 2-norm and || · ||T V for total variance norm. ⟨·, ·⟩ denotes the inner
product. Superscript i in quantity x, i.e. x[i], denotes the x quantity correspond to agent i ∈N .
λ(·) and σ(·) denote the eigenvalues and singular values of the corresponding matrix respectively.
All vectors are assumed to be column vector, unless specified. (·)[T] is the transpose of an matrix or
vector. We use 1 to denote all-1 vector with a proper dimension. For a matrix A, [A]i represents
the i-th row of matrix A. Let [⃗]δ = [δ[1], · · ·, δ[N] ][T], i.e. the column vector for local TD-errors. In
comparison, δ denotes the scalar global TD-error, i.e. δ = N[1] i∈N [δ][i][.]

First, we explain the detail of our experiment setup. P

A.1 EXPERIMENT SETUP

We considered the same setting as in the Section 6.1 of Zhang et al. (2018). There are N agents,
each has a binary-valued action space, i.e. A[i] = {0, 1}, for all i ∈N . In addition, in all the results
shown here, we set |S| = 5 states. The elements in the transition matrix are uniformly sampled from
the interval [0, 1] and normalized to be stochastic. We also added 10[−][5] onto each element to ensure
ergodicity of the MDP such that the Assumption 1 is satisfied. For each agent i and state action pair
(s, a), the mean reward R[i](s, a) is sampled uniformly from [0, 4]. The instantaneous rewards rt[i] [are]
sampled from the uniform distribution [R[i](s, a) − 0.5, R[i](s, a) + 0.5]. The policy is parameterized
following the Bolzmann policies, i.e.,

exp(qs,a[T] [i] [θ][i][)]
πθ[i] [i] [(][s, a][i][) =]

b[i]∈A[i][ exp(][q]s,b[T] [i] [θ][i][)]


-----

where qs,b[T] [i][ is the feature vector with the same dimension as][ θ][i][, for all][ s][ ∈S][ and][ i][ ∈N] [. Here,]
we set m1 = · · · = mN = 5. The elements of qs,bi are uniformly sampled from [0, 1e3]. We set
the dimension for state features K = 3. The feature matrix Φ are insured to have full column. The
stepsizes for classical MARL are set as βw,t = t[0]1[.][51][ and][ β][θ,t][ =] t[0]1[.][52][ . The network matrix as chosen]

as a ring network with diagonal elements being 0.4 and off diagonal elements 0.3 .

For our algorithm, we used step-sizes α = 1 and β = 0.1. The batch sizes are B = 10, M = 10
and the critic iterations are 10 and actor iterations are T = 100.

A.2 ADDITIONAL EXPERIMENT RESULTS

We have modified classical MARL into i)constant stepsize MARL, ii)batch MARL and iii)batch
constant stepsize MARL. For classical MARL and batch MARL, we chose the stepsizes as βw =
1 1

t[0][.][65][ and][ β][θ][ =] t[0][.][85][ as in the paper (Zhang et al., 2018), and for the constant steptize MARL and]

batch constant stepsize MARL, we chose stepsizes to be βw = 0.9 and βθ = 0.01. For batch MARL
and batch constant stepsize MARL, we used batch size as 10. Other parameters are the same as in
the A.1. We vary the system sizes from N = 5 to N = 15 and the empirical comparison results are
in Figure 2 (a)-(c). In addition, we provide the comparison between average reward setting with the
discounted counterpart of our algorithms for discounting factors ranging from γ = 0.1 to γ = 0.999.
As we can see from Figure 2 (a)-(c), our TD-sharing algorithm performs well compared to the baseline algorithms. Among the modified algorithms, batch constant stepsize MARL shows improvement compared to the classical MARL in all three cases. Moreover in (b) and (c), when system size
is larger, specifically N = 10 and N = 15, either batch modification or constant stepsize modification seem to improve the classical MARL. Yet in (a), for smaller system size, i.e. N = 5, only
modifying to the batch size or constant stepsizes don’t seem to improve the performance.
In addition, in (d), for discounted setting, as γ increases and gets closer to 1, the objective value
is closer to the average reward setting. It is because as the discounting factor approaches 1, the
effective horizon, which scales with O( [log]1−[ ǫ]γ[−][1] [)][ (Kakade, 2003), to an][ ǫ][ close stationary point gets]

larger and larger. As a result, it will get closer to the average reward setting. However, we can see
average setting value converges to a significantly higher value. More importantly, one advantage
of the average reward setting is that with more samples, the policies can potentially keep updating
and so is the objective value. From Figure 2(d), we can see that as the number of sample increases,
the average reward setting objective value still evolves, which means the policies are keep updating.
However, for the discounted reward case, the extra sample doesn’t affect the objective value.

In Figure 3, we have shown the results of different network structures on the performance when
system size is 10. We compared the ring network, small world network and 2-regular network. The
small world network is generated with mean node degrees being 4 and rewiring probability being
0.2. The entries of matrix A, for both small world network and regular network, are set as the way
discussed after Assumption 3. Different network structures exhibit different performances, but all
are better than baseline value 2. Among these three structures, within given sample numbers, ring
network yields the best result.

A.3 SUPPORTING LEMMAS FOR THEOREM 2

Because of the Assumption 1, by (Levin & Peres, 2017, Theorem 4.9), for aperiodic and irreducible
Makrov chains, we can guarantee the following lemma holds:

Lemma 1. For any policy parameter θ ∈ RPi∈N [m][i], consider the MDP with policy πθ and transition kernel P (·|s, a). Let dθ be the stationary distribution of the MDP. There exist constants κ > 0
and ρ ∈ (0, 1) such that sups∈S ||P (st|s0 = s) − dθ||T V ≤ κρ[t], ∀t ≥ 0.

This lemma has been adopted directly as an assumption in many related works in theoretical analysis
of RL (Xu et al., 2020; Chen et al., 2021; Qiu et al., 2021).

As a result of the Lemma 1, the Markov chain of state-action pair {st, at}t≥0 for policy πθ also has
the property of ergodicity. We state this result as the following lemma.


-----

(a) N = 5 (b) N = 10

2.5


1.5

1

0.5

|Col1|Col2|Col3|Col4|Col5|Col6|Col7|
|---|---|---|---|---|---|---|
||||||||
||||||||
||||TD-sharing Discounted Discounted|MARL Counter Counter|part with part with|=0.1 =0.5|
||||||||
||||||||
||||||||
||||Discounted Discounted Discounted|Counter Counter Counter|part with part with part with|=0.9 =0.99 =0.999|
||||||||
||||||||


TD-sharing MARL
Discounted Counterpart with =0.1

Discounted Counterpart with =0.5

Discounted Counterpart with =0.9

Discounted Counterpart with =0.99

Discounted Counterpart with =0.999


Sample Number 10[5]

(d) average vs discounted


(c) N = 15


Figure 2: The empirical comparisons of algorithms


2.25

2.2


2.15

2.1


2.05

2

1.95


1.9

|Col1|Col2|Col3|Col4|Col5|Col6|Col7|
|---|---|---|---|---|---|---|
||||||||
||||||||
||||||||
||||||||
||||Rin||||
|||||Rin|g Network||
||||Sm Reg|Sm Reg|all World N ular Netw|etwork ork|
||||||||


Ring Network
Small World Network
Regular Network


Sample Number 10[5]

Figure 3: Different Network Structures on Performance When N = 10


-----

Lemma 2. Suppose the Assumption 1 hold, let νθ be the stationary distribution of the state-action
pair MDP. Then, we have

sup ||P (st, at|s0 = s) − νθ||T V ≤ κρ[t], ∀t ≥ 0. (10)
s∈S

Proof. For any given s0 ∈S, by definition, we have


||P (st, at|s0) − νθ||T V = [1]

2

= [1]

2

= [1]

2

= [1]

2

= [1]


|P (st = s, at = a|s0) − νθ(s, a)|
(s,a)∈S×A

X

|P (st = s|s0)πθ(at = a|st = s) − νθ[s][(][s][)][π][θ][(][a][|][s][)][|]
(s,a)∈S×A

X

|(P (st = s|s0) − νθ[s][(][s][))][π][θ][(][a][|][s][)][|]
(s,a)∈S×A

X

πθ(a|s)|P (st = s|s0) − νθ[s][(][s][)][|]
(s,a)∈S×A

X

|P (st = s|s0) − νθ[s][(][s][)][|]
s∈S

X


= ||P (st|s0) − νθ[s][||][T V] [≤] [κρ][t][.]

Since it holds for all s0 ∈S, equation 10 holds.

As a result of Assumption 5, we have the following lemmas.

Lemma 3. For all policy πθ, we have

⟨w, Aπθ w⟩≤− [λ]2[A] [||][w][||][2] (11)

where λA is defined in Assumption 5.

Proof. Because of the fact w[T] Aπθ w = w[T] A[T]πθ [w][, we have]


w[T] Aπθ w = [1] πθ [w][)]

2 [(][w][T][ A][π][θ] [w][ +][ w][T][ A][T]

= [1] πθ [)][w]

2 [w][T][ (][A][π][θ][ +][ A][T]


≤− [λ][A] (12)

2 [w][T][ w][ =][ −] [λ]2[A] [||][w][||][2][.]

In fact, interestingly enough, the Assumption 5 and Lemma 3 are equivalent in a sense that if the
statement in the Lemma 3 is taken as the assumption, the statement in the Assumption 5 can be
obtained as a result. And the paper (Xu et al., 2020) used the statement in the Lemma 3 as an
assumption, whereas in ours and (Qiu et al., 2021), we assumed Assumption 5.

Lemma 4. For any given policy πθ, the corresponding optimal value function approximation parameter wθ[∗] [is uniformly bounded, specifically, there exists][ R][w][ :=][ 4][r]λ[max]A > 0 such that

||wθ[∗][|| ≤] [R][w][.] (13)

Proof. It’s easy to see that J(θ) ≤ rmax from equation 2 and ¯r(s, a) ≤ rmax for any (s, a) pair.
Then, we have

||wθ[∗][||][ =][ || −] [A][−]πθ[1][b][π]θ [||]


-----

−1
= || − Es∼dθ(s),s′∼P (·|s)[(φ(s[′]) − φ(s))φ[T] (s)] -  Es∼dθ,a∼πθ [φ(s)(¯r(s, a) − J(θ))]||

−1
≤|| − Es∼dθ(s),s′∼P (·|s)[(φ(s[′]) − φ(s))φ[T] (s)] || · ||Es∼dθ,a∼πθ [φ(s)(¯r(s, a) − J(θ))]||

1
=   -  ||Es∼dθ,a∼πθ [φ(s)(¯r(s, a) − J(θ))]||

σmin −Es∼dθ(s),s′∼P (·|s)[(φ(s[′]) − φ(s))φ[T] (s)]

r(s, a) − J(θ))]||
≤ [2][||][E][s][∼] [d][θ][,a][∼][π][θ] [[][φ][(][s][)(¯] 

λmin(−Aπθ − A[T]πθ [)]


r(s, a)| + |J(θ)|)]
≤ [2][E][s][∼][d][θ][,a][∼][π][θ] [[][||][φ][(][s][)][|| ·][ (][|][¯]


= [4][r][max]

λA


where the third equality used the fact ||A[−][1]|| = σmin1(A) [and the second from the last inequality is]

from Bhatia (1997) (Proposition III 5.1) .

Note that, for agent i ∈N, the estimated long term average reward µ[i]k,τ [at sample][ τ][ of iteration][ k]
in equation 5 can be written as


µ[i]k,τ [=][ β]


(1 − β)[τ] [−][l]rk,l[i] [+ (1][ −] [β][)][τ] [µ]0[i] [.] (14)
l=1

X


Lemma 5. For any i ∈N and t ≥ 0, step size 0 < β < 1, for the estimated long term average
reward for agent i, we have

µ[i]t+1 [= (1][ −] [β][)][µ]t[i] [+][ βr]t[i] (15)

is bounded by rmax, i.e. |µ[i]t+1[| ≤] [r][max][.]

Proof. WLOG, we suppose that 0 < µ[i]0 [≤] [r][max][, we have]

|µ[i]t+1[|][ =][ |][(1][ −] [β][)][µ]t[i] [+][ βr]t[i][|]

≤ (1 − β)|µ[i]t[|][ +][ β][|][r]t[i][|][.] (16)

By the supposition, we have |µ[i]0[| ≤] [r][max][. We assume][ |][µ]t[i][| ≤] [r][max] [holds for iteration][ t >][ 0][, then]
for t + 1, by equation 16

|µ[i]t+1[| ≤] [(1][ −] [β][)][|][µ]t[i][|][ +][ β][|][r]t[i][| ≤] [(1][ −] [β][)][r][max] [+][ βr][max] [=][ r][max][.]

Therefore, Lemma 5 holds by mathematical induction.

For a given policy πθ, to establish a bound on the difference between the optimal approximation
parameter wθ[∗][, we first derive a bound the difference between parameter][ w]k[i] [and the average among]
all agents ¯wk at time k. Then, we derive a bound for the difference between average ¯wk and the
optimal wθ[∗][.]

We have following notations for the analysis. Given an agent i ∈N, we consider the consensus
error at time k and we denote Q[i]k [=][ w]k[i] [−] w[¯]k, where ¯wk := N1 i∈N [w]k[i] [. Then, we denote the]

matrix form as Qk = [Q[1]k[,][ · · ·][, Q][N]k []][ ∈] [R][K][×][N][ Then, we have the following lemma.]

P

Lemma 6. Suppose the Assumption 2 and 3 hold. For the consensus error matrix, we have

||Qk+1|| ≤κ1N [2]γ[k]||Q0|| + κ[′]2[N][ 3][β] (17)

where γ := (1 − η[N] [−][1]) · (1 + 2β) < 1, κ1 = 2(1 + 2β)(1 + η[−][(][N] [−][1)]) and κ[′]2 [=][ 4(1+][η][−]1[(][N]−[−]γ[1)][)][r][max] .

Proof. By equation 7, the parameter update ˜wk[i] [for agent][ i][ at iteration][ k][ can be written as follows]


w˜k[i] [=][ w]k[i] [+][ β]

M

= wk[i] [+][ β]


δk,τ[i] [·][ φ][(][s][k,τ] [)]
τ =0

X

M −1



[rk,τ[i] +1 [−] [β]
τ =0

X


(1 − β)[τ] [−][l]rk,l[i] [−] [(1][ −] [β][)][τ] [µ]0[i]
l=1

X


-----

+ φ(sk,τ +1)[T] wk[i] [−] [φ][(][s][k,τ] [)][T][ w]k[i] []][ ·][ φ][(][s][k,τ] [)]


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] wk[i]
τ =0

X


= wk[i] [+][ β]

M


M −1

(rk,τ[i] +1 [−] [β]
τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l[i] [−] [(1][ −] [β][)][τ] [µ]0[i] [)][φ][(][s][k,τ] [)][.] (18)
l=1

X


After a consensus step, the update will be


wk[i] +1 [=]


A(i, j) · ˜wk[j]
j∈Ni

X

A(i, j) · [wk[j] [+][ β]

M

j∈Ni

X


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] wk[j]
τ =0

X


M −1

(rk,τ[j] +1 [−] [β]
τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l[j] [−] [(1][ −] [β][)][τ] [µ]0[j] [)][φ][(][s][k,τ] [)]]
l=1

X

M −1


A(i, j) · wk[j] [+][ β]

M

j∈Ni

X


φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T][ X] A(i, j) · wk[j]
τ =0 j∈Ni

X

τ


M −1

+ [β] φ(sk,τ )

M

τ =0

X


A(i, j) · (rk,τ[j] +1 [−] [β]
j∈Ni

X


(1 − β)[τ] [−][l]rk,l[j] [−] [(1][ −] [β][)][τ] [µ]0[j] [)]
l=1

X


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] wk · (Ai,:)[T]
τ =0

X


= wk · (Ai,:)[T] + [β]


M −1

+ [β] φ(sk,τ )Ai,:(rk,τ +1 − β

M

τ =0

X


(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0) (19)
l=1

X


where wk = [wk[1][, w]k[2][,][ · · ·][, w]k[N] []][ ∈] [R][K][×][N][ is the matrix form of all parameters at time][ k][,][ A][i,][:][ is]
the i-th row of matrix A and rk,l = (rk,l[1] [,][ · · ·][, r]k,l[N] [)][. Now we consider the average dynamics of the]
algorithm. Recall ¯wk = N[1] i∈N [w]k[i] [, then using equation 19 we have]


w¯k+1 = [1]

N

= [1]


wk[i] +1
i∈N

X

wk · (Ai,:)[T] + [β]

M

i∈N

X


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] wk · (Ai,:)[T]
τ =0

X


M −1

φ(sk,τ )Ai,:(rk,τ +1 − β
τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0)
l=1

X


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T][ 1]

N [w][k][ ·][ 1]

τ =0

X


= [1]

N [w][k][ ·][ 1][ +][ β]M


M −1

φ(sk,τ ) [1]

N

τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0)
l=1

X


Ai,:(rk,τ +1 − β
i∈N

X


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] w¯k
τ =0

X


= ¯wk + [β]


M −1

φ(sk,τ ) [1]

N [1][T][ (][r][k,τ] [+1][ −] [β]

τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0)
l=1

X


-----

M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] w¯k
τ =0

X


= ¯wk + [β]


M −1

φ(sk,τ )(¯rk,τ +1 − β
τ =0

X


+ [β]


(1 − β)[τ] [−][l]r¯k,l − (1 − β)[τ] µ0) (20)
l=1

X


where ¯rk,l = N[1]


i∈N [r]k,l[i] [.]


Given an agent i ∈N, we consider the consensus error at time k and recall Q[i]k [=][ w]k[i] [−] w[¯]k. Then,
we have

Q[i]k+1 [=][w]k[i] +1 [−] w[¯]k+1


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] (wk · (Ai,:)[T] − w¯k)
τ =0

X


=wk · (Ai,:)[T] − w¯k + [β]


M −1

φ(sk,τ )(Ai,: − [1]

N [1][T][ )(][r][k,τ] [+1][ −] [β]

τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0). (21)
l=1

X


Then, for the matrix form Qk = [Q[1]k[,][ · · ·][, Q][N]k []][ ∈] [R][K][×][N] [, we have]


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] QkA[T]
τ =0

X


Qk+1 =QkA[T] + [β]


M −1

φ(sk,τ )[(A − [1]

N [11][T][ )(][r][k,τ] [+1][ −] [β]

τ =0

X


+ [β]


(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0)][T]
l=1

X


M −1

φ(sk,τ )[φ(sk,τ +1) − φ(sk,τ )][T] QkA[T]
τ =0

X


=QkA[T] + [β]


M −1

φ(sk,τ )[rk,τ +1 − β
τ =0

X


+ [β]


τ

(1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0][T] (A − N[1] [11][T][ )]
l=1

X


(22)

where the first equality is due to A being doubly stochastic. For convenience, denote Bk =
1 M −1 1 M −1

M τ =0 [φ][(][s][k,τ] [)[][φ][(][s][k,τ] [+1][)][ −] [φ][(][s][k,τ] [)]][T][ and][ C][k][ =] M τ =0 [φ][(][s][k,τ] [)[][r][k,τ] [+1][ −] [β][ P]l[τ]=1[(1][ −]

β)[τ] [−][l]rk,l − (1 − β)[τ] µ0][T] . Then, iteratively we have

P P

Qk+1 =(I + βBk)QkA[T] + βCk(A − N[1] [11][T][ )]


(I + βBt˜[)][C][t][(][A][ −] [1] (23)

N [11][T][ )][A][k][−][t]

t=0 t>t˜

X Y


(I + βBt)Q0(A[T] )[k][+1] + β
t=0

Y


Then, the norm of the consensus error is following


k

(I + βBt˜[)][C][t][(][A][ −] [1]

N [11][T][ )][A][k][−][t][||]

t>t˜

Y


(I + βBt)Q0(A[T] )[k][+1] + β
t=0

Y


||Qk+1|| =||

≤||


t=0


k

||(I + βBt˜[)][|| · ||][C][t][|| · ||][(][A][ −] [1]

N [11][T][ )][A][k][−][t][||][.]

t>t˜

Y

(24)


(I + βBt)|| · ||Q0(A[T] )[k][+1]|| + β
t=0 t=0

Y X


Note that since A is doubly stochastic, so is A[T] . Let (A[T] )[k]:,i[+1] be the i-th column of matrix (A[T] )[k][+1].
From Nedic & Ozdaglar (2009), we know that


||Q0(A[T] )[k]:,i[+1][||][ =][ ||][Q][0][(][A][T][ )]:[k],i[+1] − Q0


N [1][||]


-----

((A[T] )[k]j,i[+1] − [1] 0[||]

N [)][Q][j]

j∈N

X


= ||


|(A[T] )[k]j,i[+1] − [1] 0[||]

N [| · ||][Q][j]

j∈N

X


≤ N · 2 [1 +][ η][−][(][N] [−][1)] 0[||]

1 − η[N] [−][1][ (1][ −] [η][N] [−][1][)][k][+1][ ·][ max]j∈N [||][Q][j]

≤ 2N (1 + η[−][(][N] [−][1)])(1 − η[N] [−][1])[k] -  ||Q0||. (25)

Hence, ||Q0A[k][+1]|| ≤ 2N [2](1 + η[−][(][N] [−][1)])(1 − η[N] [−][1])[k] -  ||Q0||. To bound the first term in the RHS
of equation 24, we have


|| (I + βBt)|| ≤

t=0

Y


||I + βBt||
t=0

Y

k

(||I|| + β||Bt||)
t=0

Y

k

(1 + 2β) = (1 + 2β)[k][+1]. (26)

t=0

Y


In order to make sure it converges to the neighborhood of a consensus in the limit, the step size has
η[N] [−][1]
to satisfy γ := (1 − η[N] [−][1]) · (1 + 2β) < 1, which results in β < 2(1−η[N] [−][1]) [. Hence, for the first]

term in the RHS of equation 24, we have


|| (I + βBt)|| · ||Q0A[k][+1]|| ≤ κ1N [2]γ[k]||Q0||

t=0

Y


where κ1 = 2(1 + 2β)(1 + η[−][(][N] [−][1)]).

Furthermore, we have

||(A − [1] (27)

N [11][T][ )][A][k][−][t][||][ =][ ||][A][k][−][t][+1][ −] N[1] [11][T][ || ≤] [2][N][ 2][(1 +][ η][−][(][N] [−][1)][)(1][ −] [η][N] [−][1][)][k][−][t][.]


And ||Ct|| ≤ 2Nrmax, where rmax = supi,s,a r[i](s, a). This is because

M −1 τ

||Ck|| = || [1] φ(sk,τ )[rk,τ +1 − β (1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0][T] ||

M

τ =0 l=1

X X

M −1 τ

≤ [1] ||φ(sk,τ )[rk,τ +1 − β (1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0][T] ||

M

τ =0 l=1

X X

M −1 τ

≤ [1] ||φ(sk,τ )|| · ||rk,τ +1 − β (1 − β)[τ] [−][l]rk,l − (1 − β)[τ] µ0||

M

τ =0 l=1

X X

M −1 τ

≤ [1] [||rk,τ +1|| + β (1 − β)[τ] [−][l]||rk,l|| + (1 − β)[τ] ||µ0||]

M

τ =0 l=1

X X

M −1

≤ [1] [Nrmax + β [1][ −] [(1][ −] [β][)][τ]

M 1 − (1 − β) [Nr][max][ + (1][ −] [β][)][τ] [Nr][max][] = 2][Nr][max][.]

τ =0

X


Then for the second term of equation 24, we have


k

||(I + βBt˜[)][|| · ||][C][t][|| · ||][(][A][ −] [1]

N [11][T][ )][A][k][−][t][||]

t>t˜

Y


t=0


-----

(1 + 2β)[k][−][t] -  2Nrmax · 2N [2](1 + η[−][(][N] [−][1)])(1 − η[N] [−][1])[k][−][t]
t=0

X


≤β


k

γ[k][−][t] = κ2N [3]β [1][ −] [γ][k][+1] (28)

1 − γ

t=0

X


=κ2β


where κ2 = 4(1 + η[−][(][N] [−][1)])rmax. Further, for consensus error equation 24, we have

||Qk+1|| ≤ κ1N [2]γ[k]||Q0|| + κ2N [3]β [1][ −] [γ][k][+1] ≤κ1N [2]γ[k]||Q0|| + κ[′]2[N][ 3][β] (29)

1 − γ


where κ[′]2 [=] 1κ−2γ [.]

The corresponding average parameter under the policy πθ will converge to the solution to
the following equation wθ[∗] = A[−]θ [1][b][θ][, where][ A][θ] = Es∼dθ(s)[φ(s)(φ(s[′]) − φ(s))[T] ], bθ =
E(s,a)∼dθ(s,a)[(¯r(s, a) − J(θ))φ(s)] and ¯r(s, a) = N[1] i∈N [r][i][(][s, a][)][.]

Now consider || ¯wk − w[∗]||. Recall the from the average parameter equation equation 20 and theP
corresponding ODE is

w˙ θ = Aθwθ + bθ. (30)

For the difference between average dynamics and the optimal value, we have the following lemma.


λ4A [}][ and][ M][ ≥] [(][ 1]λA [+][ β][)][ 6144[1+(](1−ρ)[κ]λ[−]A[1)][ρ][]], we have


Lemma 7. For β ≤ min{ 128[λ][A] [,]


w [+][ r]max[2] [)[1 + (][κ][ −] [1)][ρ][]]

E[|| ¯wK − wθ[∗][||][2]2[]][ ≤] [(1][ −] [λ][A] w0 − wθ[∗][||][2]2 [+ ( 1] + β) [1536(4][R][2] .

8 [β][)][K] [||][ ¯] λA (1 − ρ)λAM

(31)

Proof. The proof follows from verifying the Assumption 3 of Xu et al. (2020), then we can apply
the results from Theorem 4 of Xu et al. (2020).

1. For item 1 in the assumption, it’s easy to check that ||Aθ|| ≤ CA = 4 by Assumption 4 and
bθ ≤ Cb = 2rmax.

2. For item 2, it holds because of Lemma 3.

3. For item 3, it holds because of Lemma 1.

And we recall that the bound on ||wθ[∗][||][ is][ R][w][ =][ 4][r]λ[max]A [. Hence, by Theorem 4 of Xu et al. (2020),]

β ≤ min{ 8[λ]C[A]A[2] [,] λ4A [}][ and][ M][ ≥] [(][ 2]λA [+ 2][β][)][ 192][C](1A[2] −[[1+(]ρ)λ[κ]A[−][1)][ρ][]], equation 31 holds.

A.4 PROOF OF THEOREM 2

As a result from Lemma 4 and Lemma 7, we provide the following proof for Theorem 2.

Proof. Therefore, by equation 17 and equation 31, we have


E[ ||wK[i] [−] [w]θ[∗][||][2][]]

i=1

X

N N

≤ 2E[ ||wK[i] [−] w[¯]K ||[2]] + 2E[ || ¯wK − wθ[∗][||][2][]]

i=1 i=1

X X

≤ 2||QK ||[2] + 2N E[|| ¯wK − wθ[∗][||][2][]]


≤ 2(κ1N [2]γ[K] ||Q0|| + κ[′]2[N][ 3][β][)][2][ + 2][N] [(1][ −] [λ][A] w0 − wθ[∗][||][2]2

8 [β][)][K] [||][ ¯]


-----

A[R]w[2] [+][ C]b[2][)[1 + (][κ][ −] [1)][ρ][]]

+ 2N ( [2] + 2β) [192(][C] [2]

λA (1 − ρ)λAM


≤ κ[′]1[N][ 4][γ][2][K][ +][ κ][′′]2 [N][ 6][β][2][ +][ κ][3][N][ 5][γ][K] [β][ + 2][N] [(1][ −] [λ][A] w0 − wθ[∗][||][2]2 [+][ κ][4]

8 [β][)][K] [||][ ¯] M [N]

where κ[′]1 = 2κ[2]1[||][Q][0][||][2][,] κ”2 = 2κ[′]2[2][,] κ3 = 4κ1κ[′]2[||][Q][0][||][ and][ κ][4] = ( λ[1]A [+]

β) [3072(4][R]w[2] [+](1[r]−max[2]ρ)λ[)[1+(]A [κ][−][1)][ρ][]] .


A.5 PROOF OF THEOREM 3

We use wt[∗] [to denote the optimal value function parameter under policy][ θ][t] [at time][ t][ and]
wt = [(wt[1][)][T][,][ · · ·][,][ (][w]t[N] [)][T][ ]][T] ∈ R[N] [×][K], which is the aggregated function approximation parameters from Line 2 of Algorithm 2. Recall the δ[˜]t,l[i] [generated by Line 18 of Algorithm 2,]
which is the i-th agent’s estimate of the global TD-error from sample l at time t after consensus. Let vt[i][(][w][t][) =] B1 Bl=0−1 δ[˜]t,l[i] [(][w][t][)][ ·][ ψ]t,l[i] [and][ v][t][(][w][t][) = [(][v]t[1][(][w][t][))][T][,][ · · ·][,][ (][v]t[N] [(][w][t][))][T][ ]][T][,]

h[i]t[(][w]t[∗][) =] B1 Bl=0−1 [δ][t,l][(][w]t[∗][)]P[ ·][ ψ]t,l[i] [and][ h][t][(][w]t[∗][) = [(][h]t[1][(][w]t[∗][))][T][,][ · · ·][,][ (][h]t[N] [(][w]t[∗][))][T][ ]][T][, Adv][w][(][s, a][) =]

Es′∼P (·|s,a),r∼dr(s,a)[δw(s, a, s[′])|s, a] and g[i](w, θ) = E[Advw(s, a)ψθi (s, a[i])], where dr(s, a) is
P
the reward distribution of state-action pair (s, a). By Taylor expansion and the Lipschitz property
from Assumption 6, we have


J(θt+1) ≥ J(θt) + ⟨∇θJ(θt), θt+1 − θt⟩− [L][J]

2 [||][θ][t][+1][ −] [θ][t][||][2]

= J(θt) + α⟨∇θJ(θt), vt(wt) −∇θJ(θt) + ∇θJ(θt)⟩− [L][J] [α][2]


||vt(wt)||[2]


= J(θt) + α||∇θJ(θt)||[2] + α⟨∇θJ(θt), vt(wt) −∇θJ(θt)⟩− [L][J] [α][2]

2

−∇θJ(θt) + ∇θJ(θt)||[2]


||vt(wt)


≥ J(θt) + ( [1]

2 [α][ −] [L][J] [α][2][)][||∇][θ][J][(][θ][t][)][||][2][ −] [(1]2 [α][ +][ L][J] [α][2][)][||][v][t][(][w][t][)][ −∇][θ][J][(][θ][t][)][||][2]

where the last inequality is because


⟨∇θJ(θt), vt(wt) −∇θJ(θt)⟩≥− [1]

2 [||∇][θ][J][(][θ][t][)][||][2][ −] 2[1] [||][v][t][(][w][t][)][ −∇][θ][J][(][θ][)][||][2][,]


and

||vt(wt) −∇θJ(θt) + ∇θJ(θt)||[2] ≤ 2||vt(wt) −∇θJ(θt)||[2] + 2||∇θJ(θt)||[2]. (32)

Taking expectations on both sides conditioned on the filtration Ft and rearranging the terms, we
have


( [1]

2 [α][ −] [L][J] [α][2][)][E][[][||∇][θ][J][(][θ][t][)][||][2][|F][t][]][ ≤] [E][[][J][(][θ][t][+1][)][|F][t][]][ −] [J][(][θ][t][)]

+ ( [1] (33)

2 [α][ +][ L][J] [α][2][)][E][[][||][v][t][(][w][t][)][ −∇][θ][J][(][θ][t][)][||][2][|F][t][]][.]

Then, we establish upper bound on the third term of the RHS. By definition, we have

||vt(wt) −∇θJ(θt)||[2]


= ||vt(wt) − vt(wt[∗][) +][ v][t][(][w]t[∗][)][ −] [h][t][(][w]t[∗][) +][ h][t][(][w]t[∗][)][ −] [g][(][w]t[∗][, θ][t][) +][ g][(][w]t[∗][, θ][t][)][ −∇][θ][J][(][θ][t][)][||][2]

≤ 6||vt(wt) − vt(wt[∗][)][||][2][ + 6][||][v][t][(][w]t[∗][)][ −] [h][t][(][w]t[∗][)][||][2][ + 6][||][h][t][(][w]t[∗][)][ −] [g][(][w]t[∗][, θ][t][)][||][2]

+ 6||g(wt[∗][, θ][t][)][ −∇][θ][J][(][θ][t][)][||][2][.] (34)

We note that ||vt(wt) − vt(wt[∗][)][||][2][ =][ P]i∈N [||][v]t[i][(][w][t][)][ −] [v]t[i][(][w]t[∗][)][||][2][ and the other three terms in equa-]
tion 34 can also be similarly decomposed. For the first term in the RHS of equation 34, we have

||vt[i][(][w][t][)][ −] [v]t[i][(][w]t[∗][)][||][2]


-----

B−1

δ˜t,l[i] [(][w][t][)][ ·][ ψ]t,l[i] [−] [1]

B

l=0

X

B−1


B−1

δ˜t,l[i] [(][w]t[∗][)][ ·][ ψ]t,l[i] [||][2]
l=0

X


= || [1]

B

= || [1]

B

= || [1]



[δ[˜]t,l[i] [(][w][t][)][ −] δ[˜]t,l[i] [(][w]t[∗][)]][ ·][ ψ]t,l[i] [||][2]
l=0

X


B−1

|| [1] [A[t][gossip] ]i(wt − wt[∗][1][T][ )][T][ [][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)]][ ·][ ψ]t,l[i] [||][2]

B

l=0

X

max t [1][T][ )][T][ [][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)]][ ·][ ψ]t,l[i] [||][2]
l∈{0,···,B−1} [||][[][A][t][gossip] []][i][(][w][t][ −] [w][∗]

max t [1][T][ ||][2][ · ||][ψ]t,l[i] [||][2]
l∈{0,···,B−1} [||][[][A][t][gossip] []][i][||][2][||][[][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)]][||][2][||][w][t][ −] [w][∗]


≤ 4 · ||wt − wt[∗] [⊗] [1][||][2][ = 4]

where the third equality is from

δ˜t,l[i] [(][w][t][)][ −] δ[˜]t,l[i] [(][w]t[∗][)]


||wt[i] [−] [w]t[∗][||][2] (35)
i=1

X


= [A[t][gossip] ]i[⃗]δt,l(wt) − [A[t][gossip] ]i[⃗]δt,l(wt[∗][)]

= [A[t][gossip] ]i[[⃗]δt,l(wt) − [⃗]δt,l(wt[∗][)]]

φ[T] (st,l+1)(wt[1] [−] [w]t[∗][)][ −] [φ][T][ (][s][t,l][)(][w]t[1] [−] [w]t[∗][)]
.

= [A[t][gossip] ]i  ..

φ[T] (st,l+1)(wt[N] [−] [w]t[∗][)][ −] [φ][T][ (][s][t,l][)(][w]t[N] [−] [w]t[∗][)]




= [A[t][gossip] ]i(wt − wt[∗][1][T][ )][T][ [][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)]][.]

For the second term in the RHS of equation 34, we have

||vt[i][(][w]t[∗][)][ −] [h]t[i][(][w]t[∗][)][||][2]


B−1 B−1

δ˜t,l[i] [(][w]t[∗][)][ ·][ ψ]t,l[i] [−] [1] δt,l(wt[∗][)][ ·][ ψ]t,l[i] [||][2]

B

l=0 l=0

X X

B−1

[δ[˜]t,l[i] [(][w]t[∗][)][ −] [δ][t,l][(][w]t[∗][)]][ ·][ ψ]t,l[i] [||][2]
l=0

X


= || [1]

B

= || [1]

B

= || [1]


B−1

l=0

X



[A[t][gossip] ]i − N[1] [1][T] ⃗δt,l(wt[∗][)][ ·][ ψ]t,l[i] [||][2]




max [A[t][gossip] ]i − [1] ⃗δt,l(wt[∗][)][ ·][ ψ]t,l[i] [||][2]
l∈{0,···,B−1} [||] N [1][T]
 

max δt,l(wt[∗][)][||][2][ · ||][ψ]t,l[i] [||][2]
l∈{0,···,B−1} [||][[][A][t][gossip] []][i][ −] N[1] [1][T][ ||][2][ · ||][⃗]


max δt,l(wt[∗][)][||][2]
l∈{0,···,B−1} [N] [(21 +]1 −[ η][−]η[N][(][N][−][−][1][1)][ (1][ −] [η][N] [−][1][)][t][gossip][+1][)][2][ · ||][⃗]


≤ 16N [2]((1 + η[−][(][N] [−][1)])(1 − η[N] [−][1])[t][gossip] )[2](rmax + Rw)[2] = κ3N [2](1 − η[N] [−][1])[2][t][gossip] (36)

where κ3 = 16(1 + η[−][(][N] [−][1)])[2](rmax + Rw)[2]. We note that the second equality is because

δ˜t,l[i] [(][w]t[∗][)][ −] [δ][t,l][(][w]t[∗][)]

= [A[t][gossip] ]i[⃗]δt,l(wt[∗][)][ −] N[1] [1][T] [⃗]δt,l(wt[∗][)]



[A[t][gossip] ]i − N[1] [1][T] ⃗δt,l(wt[∗][)][.]




-----

For the last inequality, we note that δt,l(w[∗]) is bounded because rewards and feature vectors are
bounded, µ[i] is bounded for constant step size and wt[∗] [is bounded from the critic step. That is, for]
j ∈N entry in [⃗]δt,l(w[∗]) by definition,

δt,l[j] [(][w][∗][) =][ r]t,l[j] [−] [µ]t,l[j] [+ [][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)]][T][ w]t[∗][.]

Hence, its 2-norm bound is

||δt,l[j] [(][w][∗][)][||][ =][ ||][r]t,l[j] [−] [µ]t,l[j] [+ [][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)]][T][ w]t[∗][||]

≤||rt,l[j] [||][ +][ ||][µ][j]t,l[||][ +][ ||][φ][(][s][t,l][+1][)][ −] [φ][(][s][t,l][)][|| · ||][w]t[∗][||]

≤ rmax + rmax + [||φ(st,l+1)|| + ||φ(st,l)||] · Rw ≤ 2rmax + 2Rw. (37)

For the last term in equation 34, we have

||g(wt[∗][, θ][t][)][ −∇][θ][J][(][θ][t][)][||][2]

= ||Edθt (s,a)[Advwt[∗][(][s, a][)][ψ][θ][t] [(][s, a][)]][ −] [E][d][θ]t [(][s,a][)][[][Adv][θ][t][(][s, a][)][ψ][θ][t] [(][s, a][)]][||][2]

= ||Edθt (s,a)[(Advwt[∗][(][s, a][)][ −] [Adv][θ][t] [(][s, a][))][ψ][θ][t] [(][s, a][)]][||][2]

≤ (Edθt (s,a)[||(Advwt[∗][(][s, a][)][ −] [Adv][θ][t][(][s, a][))][ψ][θ][t] [(][s, a][)][||][])][2]

≤ (Edθt (s,a)[||Advwt[∗][(][s, a][)][ −] [Adv][θ][t] [(][s, a][)][|| · ||][ψ][θ][t] [(][s, a][)][||][])][2]

≤ (Edθt (s,a)[|Advwt[∗][(][s, a][)][ −] [Adv][θ][t][(][s, a][)][|][])][2]

= (Edθt (s,a)[|E[Vwt[∗] [(][s][′][)][|][s, a][]][ −] [V][w]t[∗][(][s][)][ −] [E][[][V][θ]t[∗][(][s][′][)][|][s, a][] +][ V][θ]t[∗][(][s][)][|][])][2]

≤ (Edθt (s,a)[|E[Vwt[∗] [(][s][′][)][ −] [V][θ]t[∗][(][s][′][)][|][s, a][]][|][ +][ |][V][w]t[∗] [(][s][)][ −] [V][θ]t[∗][(][s][)][|][])][2]

≤ (Edθt (s,a)[E[|Vwt[∗] [(][s][′][)][ −] [V][θ]t[∗][(][s][′][)][||][s, a][] +][ |][V][w]t[∗] [(][s][)][ −] [V][θ]t[∗][(][s][)][|][])][2]

= (E[|Vwt[∗] [(][s][)][ −] [V][θ]t[∗][(][s][)][|][] +][ E][[][|][V][w]t[∗] [(][s][)][ −] [V][θ]t[∗][(][s][)][|][])][2]

≤ 4(E[|Vwt[∗] [(][s][)][ −] [V][θ]t[∗][(][s][)][|][])][2][ ≤] [4][E][[][|][V][w]t[∗] [(][s][)][ −] [V][θ]t[∗][(][s][)][|][2][]][ ≤] [4][ξ]approx[critic] [.] (38)

For each i ∈N, we have

||h[i]t[(][w]t[∗][)][ −] [g][i][(][w]t[∗][, θ]t[i][)][||][2]


B−1

δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][,][ 1]B
l1=0

X


B−1

δt,l2 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩]
l2=0

X


= ⟨ [1]

B

= [1]

B[2]


B−1

l1=0

X

B−1


B−1

⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][, δ][t,l][2] [(][w]t[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩]
l2=0

X


= [1]

B[2]


||δt,l(wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][||][2]
l=0

X


+ [1]

B[2]


⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][, δ][t,l][2] [(][w]t[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]t,l[i] 2 [(][s, a][i][)]][⟩][.]
l1̸=l2

X


Taking expectation over the filtration Ft, we have

E[||h[i]t[(][w]t[∗][)][ −] [g][i][(][w]t[∗][, θ]t[i][)][||][2][|F][t][]]


B−1

E ||δt,l(wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][||][2][|F][t]
l=0

X h


= [1]

B[2]


+ [1]

B[2]


E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][, δ][t,l][2] [(][w]t[∗][)][ψ]θt[i] [−] [E][s,a][[][A][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩|F][t]
l1̸=l2

X h


≤ [16]

B [(][r][max][ +][ R][w][)][2]


+ [1]

B[2]


E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][, δ][t,l][2] [(][w]t[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩|F][t]
l1̸=l2

X h


-----

where the inequality follows from triangle inequality and the facts that |δt,l1 (wt[∗][)][ψ]θt[i] [| ≤] [2][r][max][ +]
2Rw and |Es,a[Advwt[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][|][ =][ |][E][[][δ][t,l][1] [(][w]t[∗][)][ψ]θt[i] []][| ≤] [2][r][max][ + 2][R][w][. WLOG, for the]
following term, we suppose l1 < l2. Then we have

E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][, δ][t,l][2] [(][w]t[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩|F][t]
h i

=E E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] [i] [(][s, a][i][)]][, δ][t,l]2 [(][w]t[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩|F][t,l][1] |Ft
h h i i

=E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] [i] [(][s, a][i][)]][,][ E] δt,l2(wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][|F][t,l][1] ⟩|Ft
h h i i

=E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] [i] [(][s, a][i][)]][,][ E][[][δ][t,l]2 [(][w]t[∗][)][ψ]θt[i] [|F][t,l][1] []][ −] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩|F][t]
h i

=E ⟨δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] [i] [(][s, a][i][)]][,][ E][[][Adv][w]t[∗] [(][s][t,l][2] [, a][t,l][2] [)][ψ][θ]t[i] [|F][t,l][1] []][ −] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][⟩|F][t]
h i

≤E ||δt,l1 (wt[∗][)][ψ]θt[i] [−] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] [i] [(][s, a][i][)]][|| · ||][E][[][Adv][w]t[∗] [(][s][t,l][2] [, a][t,l][2] [)][ψ][θ]t[i] [|F][t,l][1] []][ −] [E][s,a][[][Adv][w]t[∗] [(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][|||F][t]
h

≤2(2rmax + 2Rw)E ||E[Advwt[∗][(][s][t,l][2] [, a][t,l][2] [)][ψ][θ]t[i] [|F][t,l][1][]][ −] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][|||F][t]
h i

≤16(rmax + Rw)[2]κρ[l][2][−][l][1]

where the last inequality follows from

||E[Advwt[∗][(][s][t,l][2] [, a][t,l][2] [)][ψ][θ]t[i] [|F][t,l][1][]][ −] [E][s,a][[][Adv][w]t[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)]][||]


=||


Advwt[∗][(][s][t,l][2] [, a][t,l][2] [)][ψ][θ]t[i] [(][s][t,l][2] [, a][t,l][2] [)][P] [(][s][t,l][2] [, a][t,l][2] [|F][t,l][1] [)][ −]
(st,l2,at,l2 )

X


Advwt[∗][(][s, a][)][ψ][θ]t[i] [(][s, a][)][ν][θ][t] [(][s, a][)][||]
(s,a)

X


≤ ||Advwt[∗][(][s, a][)][ψ]θ[i] t[i] [(][s, a][i][)][|| · |][P][ l][2][−][l][1][(][s, a][|F][t,l][2] [)][ −] [ν][θ][t][(][s, a][)][|]

s,a

X

≤2(2rmax + 2Rw) · ||P [l][2][−][l][1](s, a|Ft,l2 ) − ν(s, a)||T V
≤4(rmax + Rw)κρ[l][2][−][l][1].

Then, we have

E[||h[i]t[(][w]t[∗][)][ −] [g][i][(][w]t[∗][, θ]t[i][)][||][2][|F][t][]]

≤ [1]

B[2][ [16][B][(][r][max][ +][ R][w][)][2][ + 16(][r][max][ +][ R][w][)][2][κ]


ρ[l][2][−][l][1]]

l2̸=l1

X


≤ [1] ]

B[2][ [16][B][(][r][max][ +][ R][w][)][2][ + 32(][r][max]1[ +] −[ R]ρ[w][)][2][κρB]

≤ [16(][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]] . (39)

B(1 − ρ)


Then, we have

E[||vt(wt) −∇θJ(θt)||[2]] ≤24N


||wt[i] [−] [w]t[∗][||][2][ + 6][κ][3][N][ 3][(1][ −] [η][N] [−][1][)][2][t][gossip]
i=1

X


+ 24ξapprox[critic] [+ 96(][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]] N (40)

B(1 − ρ)

As a result, substituting equation equation 40 into equation 33 and taking expectation over Ft on
both sides, we have


( [1]

2 [α][ −] [L][J] [α][2][)][E][[][||∇][θ][J][(][θ][t][)][||][2][]]

≤ E[J(θt+1)] − E[J(θt)] + ( [1]

2 [α][ +][ L][J] [α][2][)]


||wt[i] [−] [w]t[∗][||][2]
i=1

X


24N


-----

+6κ3N [3](1 − η[N] [−][1])[2][t][gossip] + 24ξapprox[critic] [+ 96(][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]] N . (41)

B(1 − ρ)



By considering step size α =


1

4LJ [, and dividing both sides of previous equation by]


1

16LJ [, we have]


E[||∇θJ(θt)||[2]] ≤16LJ (E[J(θt+1)] − E[J(θt)]) + 72N


||wt[i] [−] [w]t[∗][||][2]
i=1

X


+ 18κ3N [3](1 − η[N] [−][1])[2][t][gossip] + 72ξapprox[critic] [+ 288][N][ (][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]]

B(1 − ρ)

(42)

Let T[ˆ] be a random variable that takes value uniformly among {1, · · ·, T }. Taking summation over
t = {1, · · ·, T } and dividing by T, we have


E[||∇θJ(θ ˆT [)][||][2][] = 1]

T


E[||∇θJ(θt)||[2]]
t=1

X


T N
t=1 i=1 [||][w]t[i] [−] [w]t[∗][||][2]

≤ [16][L][J] [(][E][[][J][(][θ][T][ )]][ −] [E][[][J][(][θ][0][)])] + 72N

T T
P P

+ 18κ3N [3](1 − η[N] [−][1])[2][t][gossip] + 72ξapprox[critic] [+ 288(][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]] N

B(1 − ρ)

N
i=1 [||][w]t[i] [−] [w]t[∗][||][2]

≤ [16][L][J] [E][[][J][(][θ][T][ )]] + 72N

T T
P

+ 18κ3N [3](1 − η[N] [−][1])[2][t][gossip] + 72ξapprox[critic] [+ 288(][r][max][ +][ R][w][)][2][[1 + (2][κ][ −] [1)][ρ][]] N.

B(1 − ρ)


-----