File size: 105,054 Bytes
f71c233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 |
# ANALYTIC-DPM: AN ANALYTIC ESTIMATE OF THE OPTIMAL REVERSE VARIANCE IN DIFFUSION PROB## ABILISTIC MODELS **Fan Bao[1][ ∗], Chongxuan Li[2 3][ †], Jun Zhu[1][ †], Bo Zhang[1]** 1Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua-Huawei Joint Center for AI BNRist Center, State Key Lab for Intell. Tech. & Sys., Tsinghua University, Beijing, China 2Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China 3Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China bf19@mails.tsinghua.edu.cn,chongxuanli1991@gmail.com, _{dcszj, dcszb}@tsinghua.edu.cn_ ABSTRACT Diffusion probabilistic models (DPMs) represent a class of powerful generative models. Despite their success, the inference of DPMs is expensive since it generally needs to iterate over thousands of timesteps. A key problem in the inference is to estimate the variance in each timestep of the reverse process. In this work, we present a surprising result that both the optimal reverse variance and the corresponding optimal KL divergence of a DPM have analytic forms w.r.t. its score function. Building upon it, we propose Analytic-DPM, a training-free inference framework that estimates the analytic forms of the variance and KL divergence using the Monte Carlo method and a pretrained score-based model. Further, to correct the potential bias caused by the score-based model, we derive both lower and upper bounds of the optimal variance and clip the estimate for a better result. Empirically, our analytic-DPM improves the log-likelihood of various DPMs, produces high-quality samples, and meanwhile enjoys a 20× to 80× speed up. 1 INTRODUCTION A diffusion process gradually adds noise to a data distribution over a series of timesteps. By learning to reverse it, diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) define a data generative process. Recently, it is shown that DPMs are able to produce high-quality samples (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020b; Dhariwal & Nichol, 2021), which are comparable or even superior to the current state-of-the-art GAN models (Goodfellow et al., 2014; Brock et al., 2018; Wu et al., 2019; Karras et al., 2020b). Despite their success, the inference of DPMs (e.g., sampling and density evaluation) often requires to iterate over thousands of timesteps, which is two or three orders of magnitude slower (Song et al., 2020a) than other generative models such as GANs. A key problem in the inference is to estimate the variance in each timestep of the reverse process. Most of the prior works use a handcrafted value for all timesteps, which usually run a long chain to obtain a reasonable sample and density value (Nichol & Dhariwal, 2021). Nichol & Dhariwal (2021) attempt to improve the efficiency of sampling by learning a variance network in the reverse process. However, it still needs a relatively long trajectory to get a reasonable log-likelihood (see Appendix E in Nichol & Dhariwal (2021)). In this work, we present a surprising result that both the optimal reverse variance and the corresponding optimal KL divergence of a DPM have analytic forms w.r.t. its score function (i.e., the gradient of a log density). Building upon it, we propose Analytic-DPM, a training-free inference framework to improve the efficiency of a pretrained DPM while achieving comparable or even superior performance. Analytic-DPM estimates the analytic forms of the variance and KL divergence using the Monte Carlo method and the score-based model in the pretrained DPM. The corresponding trajectory is calculated via a dynamic programming algorithm (Watson et al., 2021). Further, to _∗Work done during an internship at Huawei Noah’s Ark Lab._ _†Correspondence to: C. Li and J. Zhu._ ----- correct the potential bias caused by the score-based model, we derive both lower and upper bounds of the optimal variance and clip its estimate for a better result. Finally, we reveal an interesting relationship between the score function and the data covariance matrix. Analytic-DPM is applicable to a variety of DPMs (Ho et al., 2020; Song et al., 2020a; Nichol & Dhariwal, 2021) in a plug-and-play manner. Empirically, Analytic-DPM consistently improves the log-likelihood of these DPMs and meanwhile enjoys a 20× to 40× speed up. Besides, AnalyticDPM also consistently improves the sample quality of DDIMs (Song et al., 2020a) and requires up to 50 timesteps (which is a 20× to 80× speed up compared to the full timesteps) to achieve a comparable FID to the corresponding baseline. 2 BACKGROUND Diffusion probabilistic models (DPMs) firstly construct a forward process q(x1:N **_x0) that injects_** _|_ noise to a data distribution q(x0), and then reverse the forward process to recover it. Given a forward noise schedule βn (0, 1), n = 1, _, N_, denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) consider a Markov forward process: ∈ _· · ·_ _N_ _qM(xn|xn−1),_ _qM(xn|xn−1) = N_ (xn|[√]αnxn−1, βnI), (1) _n=1_ Y _qM(x1:N_ **_x0) =_** _|_ where I is the identity matrix, αn and βn are scalars and αn := 1−βn. Song et al. (2020a) introduce a more general non-Markov process indexed by a non-negative vector λ = (λ1, _, λN_ ) R[N]0[:] _· · ·_ _∈_ _≥_ _qλ(x1:N_ _|x0) = qλ(xN_ _|x0)_ _qλ(xn−1|xn, x0),_ (2) _n=2_ Y _qλ(xN_ **_x0) =_** (xN _αN_ **_x0, βN_** **_I),_** _|_ _N_ _|[√]_ _qλ(xn_ 1 **_xn, x0) =_** (xn 1 **_µ˜_** _n(xn, x0), λ[2]n[I][)][,]_ _−_ _|_ _N_ _−_ _|_ **_µ˜_** _n(xn, x0) =_ _αn−1x0 +_ qβn−1 − _λ[2]n_ _[·][ x][n][ −√]β[α]n_ _[n][x][0]_ _._ p q Here αn := _i=1_ _[α][i][ and][ β]n_ [:= 1][ −] _[α][n][. Indeed, Eq. (2) includes the DDPM forward process as a]_ special case when λ[2]n [= ˜]βn, where _β[˜]n :=_ _ββn−n_ 1 _[β][n][. Another special case of Eq. (2) is the denoising]_ [Q][n] diffusion implicit model (DDIM) forward process, where λ[2]n [= 0][. Besides, we can further derive] _qλ(xn_ **_x0) =_** (xn _αnx0, βnI), which is independent of λ. In the rest of the paper, we will_ _|_ _N_ _|[√]_ focus on the forward process in Eq. (2) since it is more general, and we will omit the index λ and denote it as q(x1:N **_x0) for simplicity._** _|_ The reverse process for Eq. (2) is defined as a Markov process aimed to approximate q(x0) by gradually denoising from the standard Gaussian distribution p(xN ) = (xN **0, I):** _N_ _|_ _N_ _p(x0:N_ ) = p(xN ) _p(xn_ 1 **_xn),_** _p(xn_ 1 **_xn) =_** (xn 1 **_µn(xn), σn[2]_** **_[I][)][,]_** _−_ _|_ _−_ _|_ _N_ _−_ _|_ _n=1_ Y where µn(xn) is generally parameterized [1] by a time-dependent score-based model sn(xn) (Song & Ermon, 2019; Song et al., 2020b): 1 **_xn,_** (xn + βnsn(xn)) _._ (3) _√αn_ **_µn(xn) = ˜µn_** The reverse process can be learned by optimizing a variational bound Lvb on negative log-likelihood: _Lvb =_ Eq "−log p(x0|x1)+n=2DKL(q(xn−1|x0, xn)||p(xn−1|xn))+DKL(q(xN _|x0)||p(xN_ )) X 1Ho et al. (2020); Song et al. (2020a) parameterize1 **_µn(xn) with ˜µn(xn,_** _√α1_ _n (xn_ _−_ _βnϵn(xn))), which_ is equivalent to Eq. (3) by letting sn(xn) = **_ϵn(xn)._** q _−_ _√βn_ ----- which is equivalent to optimizing the KL divergence between the forward and the reverse process: min _Lvb_ min _DKL(q(x0:N_ ) _p(x0:N_ )). (4) **_µn,σn[2]_** _[}][N]n=1_ _⇔_ **_µn,σn[2]_** _[}][N]n=1_ _||_ _{_ _{_ To improve the sample quality in practice, instead of directly optimizing Lvb, Ho et al. (2020) consider a reweighted variant of Lvb to learn sn(xn): min EnβnEqn(xn) **_sn(xn)_** **_xn log qn(xn)_** = En,x0,ϵ **_ϵ +_** **_sn_** _n=1_ _||_ _−∇_ _||[2]_ _||_ _{_ _}[N]_ _βnsn(xn)_ + c, (5) _||[2]_ where n is uniform between 1 and N, qn(xn) is the marginal distribution of the forward process at timestep n, ϵ is a standard Gaussian noise, xn on the right-hand side is reparameterized by **_xn =_** _αnx0+_ _βnϵ and c is a constant only related to q. Indeed, Eq. (5) is exactly a weighted sum_ _[√]_ of score matching objectives (Song & Ermon, 2019), which admits an optimal solutionq **_s[∗]n[(][x][n][) =]_** _∇xn log qn(xn) for all n ∈{1, 2 · · ·, N_ _}._ Note that Eq. (5) provides no learning signal for the variance σn[2] [. Indeed,][ σ]n[2] [is generally handcrafted] in most of prior works. In DDPMs (Ho et al., 2020), two commonly used settings are σn[2] [=][ β][n] [and] _σn[2]_ [= ˜]βn. In DDIMs, Song et al. (2020a) consistently use σn[2] [=][ λ]n[2] [. We argue that these handcrafted] values are not the true optimal solution of Eq. (4) in general, leading to a suboptimal performance. 3 ANALYTIC ESTIMATE OF THE OPTIMAL REVERSE VARIANCE For a DPM, we first show that both the optimal mean µ[∗]n[(][x][n][)][ and the optimal variance][ σ]n[∗][2] [to Eq. (4)] have analytic forms w.r.t. the score function, which is summarized in the following Theorem 1. **Theorem 1. (Score representation of the optimal solution to Eq. (4), proof in Appendix A.2)** _The optimal solution µ[∗]n[(][x][n][)][ and][ σ]n[∗][2]_ _[to Eq. (4) are]_ **_µ[∗]n[(][x][n][) = ˜]µn_** _σn[∗][2]_ [=][ λ]n[2] [+] 1 **_xn,_** _√αn_ (xn + βn∇xn log qn(xn)) _,_ (6) 2 _βn_ **_xn log qn(xn)_** _αn_ _−_ _βn−1 −_ _λ[2]n_ 1 − _βnEqn(xn)_ _||∇_ _d_ _||[2]_ _,_ (7) q _where qn(xn) is the marginal distribution of the forward process at the timestep n and d is the_ _dimension of the data._ The proof of Theorem 1 consists of three key steps: - The first step (see Lemma 9) is known as the moment matching (Minka, 2013), which states that approximating arbitrary density by a Gaussian density under the KL divergence is equivalent to setting the first two moments of the two densities as the same. To our knowledge, the connection of moment matching and DPMs has not been revealed before. - In the second step (see Lemma 13), we carefully use the law of total variance conditioned on x0 and convert the second moment of q(xn 1 **_xn) to that of q(x0_** **_xn)._** _−_ _|_ _|_ - In the third step (see Lemma 11), we surprisingly find that the second moment of q(x0 **_xn)_** _|_ can be represented by the score function, and we plug the score representation into the second moment of q(xn−1|xn) to get the final results in Theorem 1. The results in Theorem 1 (and other results to appear later) can be further simplified for the DDPM forward process (i.e., λ[2]n [= ˜]βn, see Appendix D for details). Besides, we can also extend Theorem 1 to DPMs with continuous timesteps (Song et al., 2020b; Kingma et al., 2021), where their corresponding optimal mean and variance are also determined by the score function in an analytic form (see Appendix E.1 for the extension). Note that our analytic form of the optimal mean µ[∗]n[(][x][n][)][ in Eq. (6) and the previous parameterization] of µn(xn) (Ho et al., 2020) in Eq. (3) coincide. The only difference is that Eq. (3) replaces the ----- 2 7 2 12 2 9 2 13 variance2 11 2[3] 2 13 n n 2n 2[2] 2[5] 2[8] timestep n 0.4 n n 2n 0.3 (bits/dim) 0.2 term 0.1 vb0.1 L 2[2] 2[2] 2[5] 2[8] timestep n (a) Variance (b) Terms in Lvb Figure 1: Comparing our analytic estimate ˆσn[2] [and prior works with handcrafted variances][ β][n] [and] _β˜n. (a) compares the values of the variance for different timesteps. (b) compares the term in Lvb_ corresponding to each timestep. The value of Lvb is the area under the corresponding curve. score function ∇xn log qn(xn) in Eq. (6) with the score-based model sn(xn). This result explicitly shows that Eq. (5) essentially shares the same optimal mean solution to the Lvb objective, providing a simple and alternative perspective to prior works. In contrast to the handcrafted strategies used in (Ho et al., 2020; Song et al., 2020a), Theorem 1 shows that the optimal reverse variance σn[∗][2] [can also be estimated without any extra training process] given a pretrained score-based model sn(xn). In fact, we first estimate the expected mean squared norm of ∇xn log qn(xn) by Γ = (Γ1, ..., ΓN ), where **_sn(xn,m)_** _||_ _||[2]_ Γn = [1] _iid_ **_xn,m_** _qn(xn)._ (8) _∼_ _m=1_ _M is the number of Monte Carlo samples. We only need to calculate Γ once for a pretrained_ model and reuse it in downstream computations (see Appendix H.1 for a detailed discussion of the computation cost of Γ). Then, according to Eq. (7), we estimate σn[∗][2] [as follows:] _βn_ _αn_ _σˆn[2]_ [=][ λ]n[2] [+] 1 _βnΓn_ _._ (9) _−_ _βn−1 −_ _λ[2]n_ We empirically validate Theorem 1. In Figure 1 (a), we plot our analytic estimate ˆσn[2] [of a DDPM] trained on CIFAR10, as well as the baselines βn and _β[˜]n used by Ho et al. (2020). At small timesteps,_ these strategies behave differently. Figure 1 (b) shows that our ˆσn[2] [outperforms the baselines for each] term of Lvb, especially at the small timesteps. We also obtain similar results on other datasets (see Appendix G.1). Besides, we show that only a small number of Monte Carlo (MC) samples (e.g., _M_ =10, 100) is required to achieve a sufficiently small variance caused by MC and get a similar performance to that with a large M (see Appendix G.2). We also discuss the stochasticity of Lvb after plugging ˆσn[2] [in Appendix H.2.] 3.1 BOUNDING THE OPTIMAL REVERSE VARIANCE TO REDUCE BIAS According to Eq. (7) and Eq. (9), the bias of the analytic estimate ˆσn[2] [is] _βn_ **_xn log qn(xn)_** _|σn[∗][2]_ _[−]_ _σ[ˆ]n[2]_ _[|][ =]_ s _αn_ _−_ _βn−1 −_ _λ[2]n_ _βn_ _|Γn −_ Eqn(xn) _||∇_ _d_ _||[2]_ _|_ _._ (10) q Approximation error Coefficient | {z } Our estimate of the variance employs a score-based model| {z } **_sn(xn) to approximate the true score_** function ∇xn log qn(xn). Thus, the approximation error in Eq. (10) is irreducible given a pretrained model. Meanwhile, the coefficient in Eq. (10) can be large if we use a shorter trajectory to sample (see details in Section 4), potentially resulting in a large bias. _βn_ _αn_ _|σn[∗][2]_ _[−]_ _σ[ˆ]n[2]_ _[|][ =]_ ----- To reduce the bias, we derive bounds of the optimal reverse variance σn[∗][2] [and clip our estimate based] on the bounds. Importantly, these bounds are unrelated to the data distribution q(x0) and hence can be efficiently calculated. We firstly derive both upper and lower bounds of σn[∗][2] [without any] assumption about the data. Then we show another upper bound of σn[∗][2] [if the data distribution is] bounded. We formalize these bounds in Theorem 2. **Theorem 2. (Bounds of the optimal reverse variance, proof in Appendix A.3)** _σn[∗][2]_ _[has the following lower and upper bounds:]_ _βn_ _αn_ _λ[2]n_ _[≤]_ _[σ]n[∗][2]_ _[≤]_ _[λ]n[2]_ [+] (11) _βn−1 −_ _λ[2]n_ _If we further assume q(x0) is a bounded distribution in [a, b][d], where d is the dimension of data,_ _then σn[∗][2]_ _[can be further upper bounded by]_ 2 2 _αn_ _b_ _a_ _σn[∗][2]_ _n_ [+] _αn_ 1 _βn_ 1 _λ[2]n_ _−_ _._ (12) _[≤]_ _[λ][2]_ _−_ _−_ q _−_ _−_ _[·]_ s _βn_ ! 2 p Theorem 2 states that the handcrafted reverse variance λ[2]n [in prior works (Ho et al., 2020; Song et al.,] 2020a) underestimates σn[∗][2][. For instance,][ λ]n[2] [= ˜]βn in DDPM. We compare it with our estimate in Figure 1 (a) and the results agree with Theorem 2. Besides, the boundedness assumption of q(x0) is satisfied in many scenarios including generative modelling of images, and which upper bound among Eq. (11) and Eq. (12) is tighter depends on n. Therefore, we clip our estimate based on the minimum one. Further, we show theses bounds are tight numerically in Appendix G.3. 4 ANALYTIC ESTIMATION OF THE OPTIMAL TRAJECTORY The number of full timesteps N can be large, making the inference slow in practice. Thereby, we can construct a shorter forward process q(xτ1 _, · · ·, xτK_ _|x0) constrained on a trajectory 1 = τ1 < · · · <_ _τK = N of K timesteps (Song et al., 2020a; Nichol & Dhariwal, 2021; Watson et al., 2021), and K_ can be much smaller than N to speed up the inference. Formally, the shorter process is defined as _q(xτ1_ _, · · ·, xτK_ _|x0) = q(xτK_ _|x0)_ _k=2_ _[q][(][x][τ]k−1_ _[|][x][τ]k_ _[,][ x][0][)][, where]_ _q(xτk−1_ _|xτk_ _, x0) = N[Q](x[K]τk−1_ _|µ˜_ _τk−1|τk_ (xτk _, x0), λ[2]τk−1|τk_ **_[I][)][,]_** (13) **_µ˜_** _τk−1|τk_ (xτk _, x0) =_ _ατk−1_ **_x0 +_** _βτk−1_ _λ[2]τk−1|τk_ _._ q _−_ _[·][ x][τ][k][ −√]βτ[α]k[τ][k]_ **_[x][0]_** [p] q The corresponding reverse process is p(x0, xτ1 _, · · ·, xτK_ ) = p(xτK ) _k=1_ _[p][(][x][τ]k−1_ _[|][x][τ]k_ [)][, where] _p(xτk−1_ _|xτk_ ) = N (xτk−1 _|µτk−1|τk_ (xτk ), στ[2]k−1[Q]|τ[K]k **_[I][)][.]_** According to Theorem 1, the mean and variance of the optimal p[∗](xτk−1 _|xτk_ ) in the sense of KL minimization is **_µ[∗]τk−1|τk_** [(][x][τ]k [) = ˜]µτk−1|τk _στ[∗]k[2]−1|τk_ [=] _[λ]τ[2]k−1|τk_ [+]s **_xτk_** _,_ _√ατk_ (xτk + βτk _∇xτk log q(xτk_ )) (1−βτk Eq(xτk ) _||∇xτk logd q(xτk_ )||[2] _βτk_ _ατk|τk−1_ _βτk−1_ _λ[2]τk−1|τk_ _−_ ), where ατk|τk−1 := ατk _/ατk−1_ . According to Theorem 2, we can derive similar bounds for στ[∗]k[2]−1|τk (see details in Appendix C). Similarly to Eq. (9), the estimate of στ[∗]k[2]−1|τk [is] _βτk_ _ατk|τk−1_ _σˆτ[2]k−1|τk_ [=] _[λ]τ[2]k−1|τk_ [+] _βτk−1_ _λ[2]τk−1|τk_ _−_ (1 _βτk_ Γτk ), _−_ ----- where Γ is defined in Eq. (8) and can be shared across different selections of trajectories. Based on the optimal reverse process p[∗] above, we further optimize the trajectory: min _τ1,_ _,τK_ _[D][KL][(][q][(][x][0][,][ x][τ][1]_ _[,][ · · ·][,][ x][τ][K]_ [)][||][p][∗][(][x][0][,][ x][τ][1] _[,][ · · ·][,][ x][τ][K]_ [)) =][ d]2 _···_ _J(τk−1, τk) + c,_ (14) _k=2_ X where J(τk−1, τk) = log(στ[∗]k[2]−1|τk _[/λ]τ[2]k−1|τk_ [)][ and][ c][ is a constant unrelated to the trajectory][ τ][ (see] proof in Appendix A.4). The KL in Eq. (14) can be decomposed into K − 1 terms and each term has an analytic form w.r.t. the score function. We view each term as a cost function J evaluated at (τk−1, τk), and it can be efficiently estimated by J(τk−1, τk) ≈ log(ˆστ[2]k−1|τk _[/λ]τ[2]k−1|τk_ [)][, which] doesn’t require any neural network computation once Γ is given. While the logarithmic function causes bias even when the correct score function is known, it can be reduced by increasing M . As a result, Eq. (14) is reduced to a canonical least-cost-path problem (Watson et al., 2021) on a directed graph, where the nodes are {1, 2, · · ·, N _} and the edge from s to t has cost J(s, t). We_ want to find a least-cost path of K nodes starting from 1 and terminating at N . This problem can be solved by the dynamic programming (DP) algorithm introduced by Watson et al. (2021). We present this algorithm in Appendix B. Besides, we can also extend Eq. (14) to DPMs with continuous timesteps (Song et al., 2020b; Kingma et al., 2021), where their corresponding optimal KL divergences are also decomposed to terms determined by score functions. Thereby, the DP algorithm is also applicable. See Appendix E.2 for the extension. 5 RELATIONSHIP BETWEEN THE SCORE FUNCTION AND THE DATA COVARIANCE MATRIX In this part, we further reveal a relationship between the score function and the data covariance matrix. Indeed, the data covariance matrix can be decomposed to the sum of Eq(xn)Covq(x0 **_xn)[x0]_** _|_ and Covq(xn)Eq(x0 **_xn)[x0], where the first term can be represented by the score function. Further,_** _|_ the second term is negligible when n is sufficiently large because x0 and xn are almost independent. In such cases, the data covariance matrix is almost determined by the score function. Currently, the relationship is purely theoretical and its practical implication is unclear. See details in Appendix A.5. 6 EXPERIMENTS We consider the DDPM forward process (λ[2]n [= ˜]βn) and the DDIM forward process (λ[2]n [= 0][),] which are the two most commonly used special cases of Eq. (2). We denote our method, which uses the analytic estimate σn[2] [= ˆ]σn[2] [, as][ Analytic-DPM][, and explicitly call it][ Analytic-DDPM][ or] _Analytic-DDIM according to which forward process is used. We compare our Analytic-DPM with_ the original DDPM (Ho et al., 2020), where the reverse variance is either σn[2] [= ˜]βn or σn[2] [=][ β][n][, as] well as the original DDIM (Song et al., 2020a), where the reverse variance is σn[2] [=][ λ]n[2] [= 0][.] We adopt two methods to get the trajectory for both the analytic-DPM and baselines. The first one is even trajectory (ET) (Nichol & Dhariwal, 2021), where the timesteps are determined according to a fixed stride (see details in Appendix F.4). The second one is optimal trajectory (OT) (Watson et al., 2021), where the timesteps are calculated via dynamic programming (see Section 4). Note that the baselines calculate the OT based on the Lvb with their handcrafted variances (Watson et al., 2021). We apply our Analytic-DPM to three pretrained score-based models provided by prior works (Ho et al., 2020; Song et al., 2020a; Nichol & Dhariwal, 2021), as well as two score-based models trained by ourselves. The pretrained score-based models are trained on CelebA 64x64 (Liu et al., 2015), ImageNet 64x64 (Deng et al., 2009) and LSUN Bedroom (Yu et al., 2015) respectively. Our score-based models are trained on CIFAR10 (Krizhevsky et al., 2009) with two different forward noise schedules: the linear schedule (LS) (Ho et al., 2020) and the cosine schedule (CS) (Nichol & Dhariwal, 2021). We denote them as CIFAR10 (LS) and CIFAR10 (CS) respectively. The number of the full timesteps N is 4000 for ImageNet 64x64 and 1000 for other datasets. During sampling, we only display the mean of p(x0 **_x1) and discard the noise following Ho et al. (2020), and we_** _|_ additionally clip the noise scale σ2 of p(x1|x2) for all methods compared in Table 2 (see details in Appendix F.2 and its ablation study in Appendix G.4). See more experimental details in Appendix F. ----- Table 1: Negative log-likelihood (bits/dim) ↓ under the DDPM forward process. We show results under trajectories of different number of timesteps K. We select the minimum K such that analyticDPM can outperform the baselines with full timesteps and underline the corresponding results. Model \ # timesteps K 10 25 50 100 200 400 1000 CIFAR10 (LS) DDPM, σn[2] [= ˜]βn 74.95 24.98 12.01 7.08 5.03 4.29 3.73 ET DDPM, σn[2] [=][ β][n] 6.99 6.11 5.44 4.86 4.39 4.07 3.75 Analytic-DDPM **5.47** **4.79** **4.38** **4.07** **3.84** **3.71** **3.59** OT DDPM, σn[2] [=][ β][n] 5.38 4.34 3.97 3.82 3.77 3.75 3.75 Analytic-DDPM **4.11** **3.68** **3.61** **3.59** **3.59** **3.59** **3.59** CIFAR10 (CS) DDPM, σn[2] [= ˜]βn 75.96 24.94 11.96 7.04 4.95 4.19 3.60 ET DDPM, σn[2] [=][ β][n] 6.51 5.55 4.92 4.41 4.03 3.78 3.54 Analytic-DDPM **5.08** **4.45** **4.09** **3.83** **3.64** **3.53** **3.42** OT DDPM, σn[2] [=][ β][n] 5.51 4.30 3.86 3.65 3.57 3.54 3.54 Analytic-DDPM **3.99** **3.56** **3.47** **3.44** **3.43** **3.42** **3.42** CelebA 64x64 DDPM, σn[2] [= ˜]βn 33.42 13.09 7.14 4.60 3.45 3.03 2.71 ET DDPM, σn[2] [=][ β][n] 6.67 5.72 4.98 4.31 3.74 3.34 2.93 Analytic-DDPM **4.54** **3.89** **3.48** **3.16** **2.92** **2.79** **2.66** OT DDPM, σn[2] [=][ β][n] 4.76 3.58 3.16 2.99 2.94 2.93 2.93 Analytic-DDPM **2.97** **2.71** **2.67** **2.66** **2.66** **2.66** **2.66** Model \ # timesteps K 25 50 100 200 400 1000 4000 ImageNet 64x64 DDPM, σn[2] [= ˜]βn 105.87 46.25 22.02 12.10 7.59 5.04 3.89 ET DDPM, σn[2] [=][ β][n] 5.81 5.20 4.70 4.31 4.04 3.81 3.65 Analytic-DDPM **4.78** **4.42** **4.15** **3.95** **3.81** **3.69** **3.61** OT DDPM, σn[2] [=][ β][n] 4.56 4.09 3.84 3.73 3.68 3.65 3.65 Analytic-DDPM **3.83** **3.70** **3.64** **3.62** **3.62** **3.61** **3.61** We conduct extensive experiments to demonstrate that analytic-DPM can consistently improve the inference efficiency of a pretrained DPM while achieving a comparable or even superior performance. Specifically, Section 6.1 and Section 6.2 present the likelihood and sample quality results respectively. Additional experiments such as ablation studies can be found in Appendix G. 6.1 LIKELIHOOD RESULTS Since λ[2]n [= 0][ in the DDIM forward process, its variational bound][ L][vb] [is infinite. Thereby, we] only consider the likelihood results under the DDPM forward process. As shown in Table 1, on all three datasets, our Analytic-DPM consistently improves the likelihood results of the original DDPM using both ET and OT. Remarkably, using a much shorter trajectory (i.e., a much less inference time), Analytic-DPM with OT can still outperform the baselines. In Table 1, we select the minimum K such that analytic-DPM can outperform the baselines with full timesteps and underline the corresponding results. Specifically, analytic-DPM enjoys a 40× speed up on CIFAR10 (LS) and ImageNet 64x64, and a 20× speed up on CIFAR10 (CS) and CelebA 64x64. Although we mainly focus on learning-free strategies of choosing the reverse variance, we also compare to another strong baseline that predicts the variance by a neural network (Nichol & Dhariwal, 2021). With full timesteps, Analytic-DPM achieves a NLL of 3.61 on ImageNet 64x64, which is very close to 3.57 reported in Nichol & Dhariwal (2021). Besides, while Nichol & Dhariwal (2021) report that the ET drastically reduces the log-likelihood performance of their neural-networkparameterized variance, Analytic-DPM performs well with the ET. See details in Appendix G.6. ----- Table 2: FID ↓ under the DDPM and DDIM forward processes. All are evaluated under the even trajectory (ET). The result with _[†]_ is slightly better than 3.17 reported by Ho et al. (2020), because we use an improved model architecture following Nichol & Dhariwal (2021). Model \ # timesteps K 10 25 50 100 200 400 1000 CIFAR10 (LS) DDPM, σn[2] [= ˜]βn 44.45 21.83 15.21 10.94 8.23 6.43 5.11 DDPM, σn[2] [=][ β][n] 233.41 125.05 66.28 31.36 12.96 4.86 _†3.04_ Analytic-DDPM **34.26** **11.60** **7.25** **5.40** **4.01** **3.62** 4.03 DDIM 21.31 10.70 7.74 6.08 5.07 4.61 4.13 Analytic-DDIM **14.00** **5.81** **4.04** **3.55** **3.39** **3.50** **3.74** CIFAR10 (CS) DDPM, σn[2] [= ˜]βn 34.76 16.18 11.11 8.38 6.66 5.65 4.92 DDPM, σn[2] [=][ β][n] 205.31 84.71 37.35 14.81 5.74 **3.40** **3.34** Analytic-DDPM **22.94** **8.50** **5.50** **4.45** **4.04** 3.96 4.31 DDIM 34.34 16.68 10.48 7.94 6.69 5.78 4.89 Analytic-DDIM **26.43** **9.96** **6.02** **4.88** **4.92** **5.00** **4.66** CelebA 64x64 DDPM, σn[2] [= ˜]βn 36.69 24.46 18.96 14.31 10.48 8.09 5.95 DDPM, σn[2] [=][ β][n] 294.79 115.69 53.39 25.65 9.72 **3.95** **3.16** Analytic-DDPM **28.99** **16.01** **11.23** **8.08** **6.51** 5.87 5.21 DDIM 20.54 13.45 9.33 6.60 4.96 4.15 3.40 Analytic-DDIM **15.62** **9.22** **6.13** **4.29** **3.46** **3.38** **3.13** Model \ # timesteps K 25 50 100 200 400 1000 4000 ImageNet 64x64 DDPM, σn[2] [= ˜]βn **29.21** **21.71** 19.12 17.81 17.48 16.84 16.55 DDPM, σn[2] [=][ β][n] 170.28 83.86 45.04 28.39 21.38 17.58 16.38 Analytic-DDPM 32.56 22.45 **18.80** **17.16** **16.40** **16.14** **16.34** DDIM 26.06 20.10 18.09 17.84 17.74 17.73 19.00 Analytic-DDIM **25.98** **19.23** **17.73** **17.49** **17.44** **17.57** **18.98** 6.2 SAMPLE QUALITY As for the sample quality, we consider the commonly used FID score (Heusel et al., 2017), where a lower value indicates a better sample quality. As shown in Table 2, under trajectories of different K, our Analytic-DDIM consistently improves the sample quality of the original DDIM. This allows us to generate high-quality samples with less than 50 timesteps, which results in a 20× to 80× speed up compared to the full timesteps. Indeed, in most cases, Analytic-DDIM only requires up to 50 timesteps to get a similar performance to the baselines. Besides, Analytic-DDPM also improves the sample quality of the original DDPM in most cases. For fairness, we use the ET implementation in Nichol & Dhariwal (2021) for all results in Table 2. We also report the results on CelebA 64x64 using a slightly different implementation of the ET following Song et al. (2020a) in Appendix G.7, and our Analytic-DPM is still effective. We show generated samples in Appendix G.9. We observe that Analytic-DDPM does not always outperform the baseline under the FID metric, which is inconsistent with the likelihood results in Table 1. Such a behavior essentially roots in the different natures of the two metrics and has been investigated in extensive prior works (Theis et al., 2015; Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021; Vahdat et al., 2021; Watson et al., 2021; Kingma et al., 2021). Similarly, using more timesteps doesn’t necessarily yield a better FID. For instance, see the Analytic-DDPM results on CIFAR10 (LS) and the DDIM results on ImageNet 64x64 in Table 2. A similar phenomenon is observed in Figure 8 in Nichol & Dhariwal (2021). Moreover, a DPM (including Analytic-DPM) with OT does not necessarily lead to a better FID score (Watson et al., 2021) (see Appendix G.5 for a comparison of ET and OT in Analytic-DPM). ----- Table 3: Efficiency comparison, based on the least number of timesteps ↓ required to achieve a FID around 6 (with the corresponding FID). To get the strongest baseline, the results with _[†]_ are achieved by using the quadratic trajectory Song et al. (2020a) instead of the default even trajectory. Method CIFAR10 CelebA 64x64 LSUN Bedroom DDPM (Ho et al., 2020) _†90 (6.12)_ _> 200_ 130 (6.06) DDIM (Song et al., 2020a) _†30 (5.85)_ _> 100_ Best FID > 6 Improved DDPM (Nichol & Dhariwal, 2021) 45 (5.96) Missing model **90 (6.02)** Analytic-DPM (ours) **25 (5.81)** **55 (5.98)** 100 (6.05) We summarize the efficiency of different methods in Table 3, where we consider the least number of timesteps required to achieve a FID around 6 as the metric for a more direct comparison. 7 RELATED WORK **DPMs and their applications. The diffusion probabilistic model (DPM) is initially introduced by** Sohl-Dickstein et al. (2015), where the DPM is trained by optimizing the variational bound Lvb. Ho et al. (2020) propose the new parameterization of DPMs in Eq. (3) and learn DPMs with the reweighted variant of Lvb in Eq. (5). Song et al. (2020b) model the noise adding forward process as a stochastic differential equation (SDE) and introduce DPMs with continuous timesteps. With these important improvements, DPMs show great potential in various applications, including speech synthesis (Chen et al., 2020; Kong et al., 2020; Popov et al., 2021; Lam et al., 2021), controllable generation (Choi et al., 2021; Sinha et al., 2021), image super-resolution (Saharia et al., 2021; Li et al., 2021), image-to-image translation (Sasaki et al., 2021), shape generation (Zhou et al., 2021) and time series forecasting (Rasul et al., 2021). **Faster DPMs. Several works attempt to find short trajectories while maintaining the DPM per-** formance. Chen et al. (2020) find an effective trajectory of only six timesteps by the grid search. However, the grid search is only applicable to very short trajectories due to its exponentially growing time complexity. Watson et al. (2021) model the trajectory searching as a least-cost-path problem and introduce a dynamic programming (DP) algorithm to solve this problem. Our work uses this DP algorithm, where the cost is defined as a term of the optimal KL divergence. In addition to these trajectory searching techniques, Luhman & Luhman (2021) compress the reverse denoising process into a single step model; San-Roman et al. (2021) dynamically adjust the trajectory during inference. Both of them need extra training after getting a pretrained DPM. As for DPMs with continuous timesteps (Song et al., 2020b), Song et al. (2020b) introduce an ordinary differential equation (ODE), which improves sampling efficiency and enables exact likelihood computation. However, the likelihood computation involves a stochastic trace estimator, which requires a multiple number of runs for accurate computation. Jolicoeur-Martineau et al. (2021) introduce an advanced SDE solver to simulate the reverse process in a more efficient way. However, the log-likelihood computation based on this solver is not specified. **Variance Learning in DPMs. In addition to the reverse variance, there are also works on learning** the forward noise schedule (i.e., the forward variance). Kingma et al. (2021) propose variational diffusion models (VDMs) on continuous timesteps, which use a signal-to-noise ratio function to parameterize the forward variance and directly optimize the variational bound objective for a better log-likelihood. While we primarily apply our method to DDPMs and DDIMs, estimating the optimal reverse variance can also be applied to VDMs (see Appendix E). 8 CONCLUSION We present that both the optimal reverse variance and the corresponding optimal KL divergence of a DPM have analytic forms w.r.t. its score function. Building upon it, we propose Analytic_DPM, a training-free inference framework that estimates the analytic forms of the variance and KL_ divergence using the Monte Carlo method and a pretrained score-based model. We derive bounds of the optimal variance to correct potential bias and reveal a relationship between the score function and the data covariance matrix. Empirically, our analytic-DPM improves both the efficiency and performance of likelihood results, and generates high-quality samples efficiently in various DPMs. ----- ACKNOWLEDGMENTS This work was supported by NSF of China Projects (Nos. 62061136001, 61620106010, 62076145), Beijing NSF Project (No. JQ19016), Beijing Outstanding Young Scientist Program NO. BJJWZYJH012019100020098, Beijing Academy of Artificial Intelligence (BAAI), TsinghuaHuawei Joint Research Program, a grant from Tsinghua Institute for Guo Qiang, and the NVIDIA NVAIL Program with GPU/DGX Acceleration, Major Innovation & Planning Interdisciplinary Platform for the “Double-First Class” Initiative, Renmin University of China. ETHICS STATEMENT This work proposes an analytic estimate of the optimal variance in the reverse process of diffusion probabilistic models. As a fundamental research in machine learning, the negative consequences are not obvious. Though in theory any technique can be misused, it is not likely to happen at the current stage. REPRODUCIBILITY STATEMENT [We provide our codes and links to pretrained models in https://github.com/baofff/](https://github.com/baofff/Analytic-DPM) [Analytic-DPM. We provide details of these pretrained models in Appendix F.1. We provide de-](https://github.com/baofff/Analytic-DPM) tails of data processing, log-likelihood evaluation, sampling and FID computation in Appendix F.2. We provide complete proofs of all theoretical results in Appendix A. REFERENCES Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018. Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv _preprint arXiv:1509.00519, 2015._ Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad: Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020. Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Conditioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938, 2021. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009. Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. arXiv preprint _arXiv:2105.05233, 2021._ Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. arXiv _preprint arXiv:1903.08689, 2019._ Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information _processing systems, 27, 2014._ Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in _neural information processing systems, 30, 2017._ Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint _arXiv:2006.11239, 2020._ ----- Alexia Jolicoeur-Martineau, Ke Li, R´emi Pich´e-Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080, 2021. Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676, 2020a. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on _Computer Vision and Pattern Recognition, pp. 8110–8119, 2020b._ Hyun-Chul Kim and Zoubin Ghahramani. Bayesian gaussian process classification with the em-ep algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):1948–1959, 2006. Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. _arXiv preprint arXiv:1807.03039, 2018._ Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. _arXiv preprint arXiv:2107.00630, 2021._ Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. Max WY Lam, Jun Wang, Rongjie Huang, Dan Su, and Dong Yu. Bilateral denoising diffusion models. arXiv preprint arXiv:2108.11514, 2021. Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff: Single image super-resolution with diffusion probabilistic models. _arXiv preprint_ _arXiv:2104.14951, 2021._ Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In _2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December_ _7-13, 2015, pp. 3730–3738. IEEE Computer Society, 2015._ Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. _arXiv preprint_ _arXiv:1711.05101, 2017._ Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved sampling speed. arXiv preprint arXiv:2101.02388, 2021. Thomas P Minka. Expectation propagation for approximate bayesian inference. arXiv preprint _arXiv:1301.2294, 2013._ Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute of Technology, 2001. Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018. Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. _arXiv_ _preprint arXiv:2102.09672, 2021._ Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A diffusion probabilistic model for text-to-speech. arXiv preprint arXiv:2105.06337, 2021. Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting. _arXiv preprint_ _arXiv:2101.12072, 2021._ ----- Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning, pp. 1278–1286. PMLR, 2014. Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image super-resolution via iterative refinement. arXiv preprint arXiv:2104.07636, 2021. Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion models. arXiv preprint arXiv:2104.02600, 2021. Hiroshi Sasaki, Chris G Willcocks, and Toby P Breckon. Unit-ddpm: Unpaired image translation with denoising diffusion probabilistic models. arXiv preprint arXiv:2104.05358, 2021. Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-denoising models for few-shot conditional generation. arXiv preprint arXiv:2106.06819, 2021. Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learn_ing, pp. 2256–2265. PMLR, 2015._ Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv _preprint arXiv:2010.02502, 2020a._ Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. _arXiv preprint arXiv:1907.05600, 2019._ Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint _arXiv:2011.13456, 2020b._ Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of scorebased diffusion models. arXiv e-prints, pp. arXiv–2101, 2021. Lucas Theis, A¨aron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844, 2015. Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv preprint _arXiv:2007.03898, 2020._ Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. arXiv _preprint arXiv:2106.05931, 2021._ Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sample from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021. Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, and Timothy Lillicrap. Logan: Latent optimisation for generative adversarial networks. arXiv preprint arXiv:1912.00953, 2019. Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis between variational autoencoders and energy-based models. In International Conference on Learning Repre_sentations, 2020._ Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. _arXiv preprint_ _arXiv:1506.03365, 2015._ Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel diffusion. arXiv preprint arXiv:2104.03670, 2021. ----- A PROOFS AND DERIVATIONS A.1 LEMMAS **Lemma 1. (Cross-entropy to Gaussian) Suppose q(x) is a probability density function with mean** **_µq and covariance matrix Σq and p(x) = N_** (x|µ, Σ) is a Gaussian distribution, then the cross_entropy between q and p is equal to the cross-entropy between_ (x **_µq, Σq) and p, i.e.,_** _N_ _|_ _H(q, p) = H(_ (x **_µq, Σq), p)_** _N_ _|_ = [1] 2 [log((2][π][)][d][|][Σ][|][) + 1]2 [tr(][Σ][q][Σ][−][1][) + 1]2 [(][µ][q][ −] **_[µ][)][⊤][Σ][−][1][(][µ][q][ −]_** **_[µ][)][.]_** _Proof._ 1 exp( (2π)[d]|Σ| _−_ [(][x][ −] **_[µ][)][⊤][Σ]2[−][1][(][x][ −]_** **_[µ][)]_** _H(q, p) = −Eq(x) log p(x) = −Eq(x) log_ = [1] 2 [log((2][π][)][d][|][Σ][|][) + 1]2 [E][q][(][x][)][(][x][ −] **_[µ][)][⊤][Σ][−][1][(][x][ −]_** **_[µ][)]_** = [1] 2 [log((2][π][)][d][|][Σ][|][) + 1]2 [E][q][(][x][)][ tr((][x][ −] **_[µ][)(][x][ −]_** **_[µ][)][⊤][Σ][−][1][)]_** = 2 [1] [log((2][π][)][d][|][Σ][|][) + 1]2 [tr(][E][q][(][x][)] (x − **_µ)(x −_** **_µ)[⊤][]_** **Σ[−][1])** = [1] (x **_µq)(x_** **_µq)[⊤]_** + (µq **_µ)(µq_** **_µ)[⊤][]_** **Σ[−][1])** 2 [log((2][π][)][d][|][Σ][|][) + 1]2 [tr(][E][q][(][x][)] _−_ _−_ _−_ _−_ = [1]2 [log((2][π][)][d][|][Σ][|][) + 1]2 [tr(] **Σq + (µq −** **_µ)(µq −_** **_µ)[⊤][]_** **Σ[−][1])** = [1] 2 [log((2][π][)][d][|][Σ][|][) + 1]2 [tr(][Σ][q][Σ][−][1][) + 1]2 [tr((][µ][q][ −] **_[µ][)(][µ][q][ −]_** **_[µ][)][⊤][Σ][−][1][)]_** = [1] 2 [log((2][π][)][d][|][Σ][|][) + 1]2 [tr(][Σ][q][Σ][−][1][) + 1]2 [(][µ][q][ −] **_[µ][)][⊤][Σ][−][1][(][µ][q][ −]_** **_[µ][)]_** =H( (x **_µq, Σq), p)._** _N_ _|_ **Lemma 2. (KL to Gaussian) Suppose q(x) is a probability density function with mean µq and** _covariance matrix Σq and p(x) = N_ (x|µ, Σ) is a Gaussian distribution, then _DKL(q_ _p) = DKL(_ (x **_µq, Σq)_** _p) + H(_ (x **_µq, Σq))_** _H(q),_ _||_ _N_ _|_ _||_ _N_ _|_ _−_ _where H(·) denotes the entropy of a distribution._ _Proof. According to Lemma 1, we have H(q, p) = H(_ (x **_µq, Σq), p). Thereby,_** _N_ _|_ _DKL(q_ _p) = H(q, p)_ _H(q) = H(_ (x **_µq, Σq), p)_** _H(q)_ _||_ _−_ _N_ _|_ _−_ =H( (x **_µq, Σq), p)_** _H(_ (x **_µq, Σq)) + H(_** (x **_µq, Σq))_** _H(q)_ _N_ _|_ _−_ _N_ _|_ _N_ _|_ _−_ =DKL( (x **_µq, Σq)_** _p) + H(_ (x **_µq, Σq))_** _H(q)._ _N_ _|_ _||_ _N_ _|_ _−_ **Lemma 3. (Equivalence between the forward and reverse Markov property) Suppose q(x0:N** ) = _n=1_ _q(xn|xn−1) is a Markov chain, then q is also a Markov chain in the reverse direction,_ Q _q(x0)_ _i.e., q(x0:N_ ) = q(xN ) _n=1_ _q(xn−1|xn)._ Q ----- _Proof._ _q(xn−1|xn, · · ·, xN_ ) = _[q][(][x]q[n]([−]x[1]n[,][ x],_ _[n][,],[ · · ·] x[,]N[ x])_ _[N]_ [)] _· · ·_ _N_ _q(xn−1, xn)_ _i=n+1_ _q(xi|xi−1)_ = q(xn 1 **_xn)._** _N_ Q _−_ _|_ _q(xn)_ _i=n+1_ _q(xi|xi−1)_ Q Thereby, q(x0:N ) = q(xN ) _n=1_ _q(xn−1|xn)._ Q **Lemma 4. (Entropy of a Markov chain) Suppose q(x0:N** ) is a Markov chain, then EqH(q(xn 1 **_xn)) = H(q(x0)) +_** EqH(q(xn **_xn_** 1)). _−_ _|_ _|_ _−_ _n=1_ _n=1_ X X _H(q(x0:N_ )) = H(q(xN )) + _Proof. According to Lemma 3, we have_ _H(q(x0:N_ )) = − Eq log q(xN ) _q(xn_ 1 **_xn) =_** Eq log q(xN ) Eq log q(xn 1 **_xn)_** _−_ _|_ _−_ _−_ _−_ _|_ _n=1_ _n=1_ Y X =H(q(xN )) + EqH(q(xn 1 **_xn))._** _−_ _|_ _n=1_ X Similarly, we also have H(q(x0:N )) = H(q(x0)) + EqH(q(xn **_xn_** 1)). _n=1_ _|_ _−_ P **Lemma 5. (Entropy of a DDPM forward process) Suppose q(x0:N** ) is a Markov chain and _q(xn|xn−1) = N_ (xn|[√]αnxn−1, βnI), then _H(q(x0:N_ )) = H(q(x0)) + _[d]_ 2 _Proof. According to Lemma 4, we have_ log(2πeβn). _n=1_ X EqH(q(xn **_xn_** 1)) = H(q(x0)) + _|_ _−_ _n=1_ _n=1_ X X _H(q(x0:N_ )) = H(q(x0)) + 2 [log(2][πeβ][n][)][.] **Lemma 6. (Entropy of a conditional Markov chain) Suppose q(x1:N** _|x0) is Markov, then_ _H(q(x0:N_ )) = H(q(x0)) + EqH(q(xN _|x0)) +_ _Proof. According to Lemma 4, we have_ _H(q(x0:N_ )) =H(q(x0)) + EqH(q(x1:N _|x0))_ =H(q(x0)) + EqH(q(xN _|x0)) +_ EqH(q(xn 1 **_xn, x0))._** _−_ _|_ _n=2_ X _N_ EqH(q(xn 1 **_xn, x0))._** _−_ _|_ _n=2_ X ----- **Lemma 7. (Entropy of a generalized DDPM forward process) Suppose q(x1:N** _|x0) is Markov,_ _q(xN_ **_x0) is Gaussian with covariance βN_** **_I and q(xn_** 1 **_xn, x0) is Gaussian with covariance λ[2]n[I][,]_** _|_ _−_ _|_ _then_ _H(q(x0:N_ )) = H(q(x0)) + _[d]_ 2 [log(2][πeβ][N] [) +][ d]2 _Proof. Directly derived from Lemma 6._ log(2πeλ[2]n[)][.] _n=2_ X **Lemma 8. (KL to a Markov chain) Suppose q(x0:N** ) is a probability distribution and p(x0:N ) = _p(xN_ ) _n=1_ _p(xn−1|xn) is a Markov chain, then we have_ Q EqDKL(q(x0:N 1 **_xN_** ) _p(x0:N_ 1 **_xN_** )) = _−_ _|_ _||_ _−_ _|_ EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn)) + c,_** _−_ _|_ _||_ _−_ _|_ _n=1_ X _where c =_ EqH(q(xn 1 **_xn))_** EqH(q(x0:N 1 **_xN_** )) is only related to q. Particularly, if _n=1_ _−_ _|_ _−_ _−_ _|_ _q(x0:N_ ) is also a Markov chain, thenP _c = 0._ _Proof._ EqDKL(q(x0:N 1 **_xN_** ) _p(x0:N_ 1 **_xN_** )) = Eq log p(x0:N 1 **_xN_** ) EqH(q(x0:N 1 **_xN_** )) _−_ _|_ _||_ _−_ _|_ _−_ _−_ _|_ _−_ _−_ _|_ = Eq log p(xn 1 **_xn)_** EqH(q(x0:N 1 **_xN_** )) _−_ _−_ _|_ _−_ _−_ _|_ _n=1_ X EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn)) +_** _−_ _|_ _||_ _−_ _|_ _n=1_ X EqH(q(xn 1 **_xn))_** EqH(q(x0:N 1 **_xN_** )). _−_ _|_ _−_ _−_ _|_ _n=1_ X Let c = EqH(q(xn 1 **_xn))_** EqH(q(x0:N 1 **_xN_** )), then _n=1_ _−_ _|_ _−_ _−_ _|_ P EqDKL(q(x0:N 1 **_xN_** ) _p(x0:N_ 1 **_xN_** )) = _−_ _|_ _||_ _−_ _|_ EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn)) + c._** _−_ _|_ _||_ _−_ _|_ _n=1_ X If q(x0:N ) is also a Markov chain, according to Lemma 4, we have c = 0. **Lemma 9. (The optimal Markov reverse process with Gaussian transitions is equivalent to moment** _matching) Suppose q(x0:N_ ) is probability density function and p(x0:N ) = _n=1_ _p(xn−1|xn)p(xN_ ) _is a Gaussian Markov chain with p(xn_ 1 **_xn) =_** (xn 1 **_µn(xn), σn[2]_** **_[I][)][, then the joint KL opti-]Q_** _−_ _|_ _N_ _−_ _|_ _mization_ min _DKL(q(x0:N_ ) _p(x0:N_ )) **_µn,σn[2]_** _[}][N]n=1_ _||_ _{_ _has an optimal solution_ **_µ[∗]n[(][x][n][) =][ E]q(xn−1|xn)[[][x][n][−][1][]][,]_** _σn[∗][2]_ [=][ E]qn(xn) tr(Covq(xn−d1|xn)[xn−1]) _which match the first two moments of q(xn−1|xn). The corresponding optimal KL is_ _DKL(q(x0:N_ ) _p[∗](x0:N_ )) = H(q(xN ), p(xN )) + _[d]_ _||_ 2 log(2πeσn[∗][2][)][ −] _[H][(][q][(][x][0:][N]_ [))][.] _n=1_ X **Remark. Lemma 9 doesn’t assume the form of q(x0:N** ), thereby it can be applied to more general _Gaussian models, such as multi-layer VAEs with Gaussian decoders (Rezende et al., 2014; Burda_ _et al., 2015). In this case, q(x1:N_ **_x0) is the hierarchical encoders of multi-layer VAEs._** _|_ ----- _Proof. According to Lemma 8, we have_ _DKL(q(x0:N_ ) _p(x0:N_ )) = DKL(q(xN ) _p(xN_ )) + _||_ _||_ EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn)) + c,_** _−_ _|_ _||_ _−_ _|_ _n=1_ X where c = EqH(q(xn 1 **_xn))_** EqH(q(x0:N 1 **_xN_** )). _n=1_ _−_ _|_ _−_ _−_ _|_ P Since EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn)) is only related to µn(_** ) and σn[2] [, the joint KL optimization] _−_ _|_ _||_ _−_ _|_ _·_ is decomposed into n independent optimization sub-problems: min EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn)),_** 1 _n_ _N._ **_µn,σn[2]_** _−_ _|_ _||_ _−_ _|_ _≤_ _≤_ According to Lemma 2, we have EqDKL(q(xn 1 **_xn)_** _p(xn_ 1 **_xn))_** _−_ _|_ _||_ _−_ _|_ =EqDKL( (xn 1 Eq(xn 1 **_xn)[xn_** 1], Covq(xn 1 **_xn)[xn_** 1]) _p(xn_ 1 **_xn))_** _N_ _−_ _|_ _−_ _|_ _−_ _−_ _|_ _−_ _||_ _−_ _|_ + EqH( (xn 1 Eq(xn 1 **_xn)[xn_** 1], Covq(xn 1 **_xn)[xn_** 1])) EqH(q(xn 1 **_xn))_** _N_ _−_ _|_ _−_ _|_ _−_ _−_ _|_ _−_ _−_ _−_ _|_ =F(σn[2] [) +][ G][(][σ]n[2] _[,][ µ][n][) +][ c][′]_ where _F(σn[2]_ [) = 1]2 _σn[−][2][E][q]_ [tr(Cov]q(xn−1|xn)[[][x][n][−][1][]) +][ d][ log][ σ]n[2] _,_ _G(σn[2]_ _[,][ µ][n][) = 1]2_ _[σ]n[−][2][E][q][||][E]q(xn−1|xn)[[][x][n][−][1][]][ −]_ **_[µ][n][(][x][n][)][||][2][,]_** and c[′] = _[d]2_ [log(2][π][)][ −] [E][q][H][(][q][(][x][n][−][1][|][x][n][))][. The optimal][ µ]n[∗] [(][x][n][)][ is achieved when] Eq(xn 1 **_xn)[xn_** 1] **_µn(xn)_** = 0. _||_ _−_ _|_ _−_ _−_ _||[2]_ Thereby, µ[∗]n[(][x][n][) =][ E]q(xn 1 **_xn)[[][x][n][−][1][]][. In this case,][ G][(][σ]n[2]_** _[,][ µ][∗]n[) = 0][ and we only need to consider]_ _−_ _|_ _F(σn[2]_ [)][ for the optimal][ σ]n[∗][2][. By calculating the gradient of][ F][, we know that][ F][ gets its minimum at] _σn[∗][2]_ [=][ E][q] tr(Covq(xn−1|xn)[xn−1]) _._ _d_ In the optimal case, F(σn[∗][2][) =][ d]2 [(1 + log][ σ]n[∗][2][)][ and] _EqDKL(q(xn_ 1 **_xn)_** _p[∗](xn_ 1 **_xn)) =_** _[d]_ _n_ [)][ −] [E][q][H][(][q][(][x][n][−][1][|][x][n][))][.] _−_ _|_ _||_ _−_ _|_ 2 [log(2][πeσ][∗][2] As a result, _DKL(q(x0:N_ ) _p[∗](x0:N_ )) _||_ _d_ 2 [log(2][πeσ]n[∗][2][)][ −] EqH(q(xn 1 **_xn))_** _−_ _|_ _n=1_ X =DKL(q(xN ) _p(xN_ )) + _||_ _n=1_ EqH(q(xn 1 **_xn))_** (H(q(x0:N )) _H(q(xN_ ))) _−_ _|_ _−_ _−_ _n=1_ X _d_ 2 [log(2][πeσ]n[∗][2][)][ −] _[H][(][q][(][x][0:][N]_ [))][.] =H(q(xN ), p(xN )) + _n=1_ **Lemma 10. (Marginal score function) Suppose q(v, w) is a probability distribution, then** **_w log q(w) =Eq(v_** **_w)_** **_w log q(w_** **_v)_** _∇_ _|_ _∇_ _|_ ----- _Proof. According to Eq(v_ **_w)_** **_w log q(v_** **_w) =_** **_wq(v_** **_w)dv =_** **_w_** _q(v_ **_w)dv = 0, we have_** _|_ _∇_ _|_ _∇_ _|_ _∇_ _|_ **_w log q(w) =_** **_w log q(w) +R Eq(v_** **_w)_** **_w log q(v_** **_w)R_** _∇_ _∇_ _|_ _∇_ _|_ =Eq(v **_w)_** **_w log q(v, w) = Eq(v_** **_w)_** **_w log q(w_** **_v)._** _|_ _∇_ _|_ _∇_ _|_ **Lemma 11. (Score representation of conditional expectation and covariance) Suppose q(v, w) =** _q(v)q(w|v), where q(w|v) = N_ (w|[√]αv, βI), then 1 Eq(v **_w)[v] =_** (w + β **_w log q(w)),_** _|_ _√α_ _∇_ Eq(w)Covq(v **_w)[v] =_** _[β]_ **_I_** _βEq(w)_ **_w log q(w)_** **_w log q(w)[⊤][]_** _|_ _α_ _−_ _∇_ _∇_ tr(Covq(v **_w)[v])_** **_w log q(w)_** Eq(w) _|_ = _[β]_ 1 _βEq(w)_ _||∇_ _||[2]_ _._ _d_ _α_ _−_ _d_ _Proof. According to Lemma 10, we have_ **_w_** _αv_ **_w log q(w) = Eq(v_** **_w)_** **_w log q(w_** **_v) =_** Eq(v **_w)_** _−_ _[√]_ _._ _∇_ _|_ _∇_ _|_ _−_ _|_ _β_ Thereby, Eq(v|w)[v] = _√1α_ (w + β∇w log q(w)). Furthermore, we have Eq(w)Covq(v **_w)[v] =_** _[β][2]_ ] _|_ _α_ [E][q][(][w][)][Cov][q][(][v][|][w][)][[] **_[w][ −√]β_** _[α][v]_ = _[β][2]_ Eq(v **_w)(_** **_[w][ −√][α][v]_** )( **_[w][ −√][α][v]_** )[⊤] Eq(v **_w)[_** **_[w][ −√][α][v]_** ]Eq(v **_w)[_** **_[w][ −√][α][v]_** ][⊤] _α_ [E][q][(][w][)] _|_ _β_ _β_ _−_ _|_ _β_ _|_ _β_ 1 = _[β][2]_ _α_ _β[2][ E][q][(][v][)][E][q][(][w][|][v][)][(][w][ −√][α][v][)(][w][ −√][α][v][)][⊤]_ _[−]_ [E][q][(][w][)][∇][w][ log][ q][(][w][)][∇][w][ log][ q][(][w][)][⊤] 1 = _[β][2]_ _α_ _β[2][ E][q][(][v][)][Cov][q][(][w][|][v][)][w][ −]_ [E][q][(][w][)][∇][w][ log][ q][(][w][)][∇][w][ log][ q][(][w][)][⊤] 1 = _[β][2]_ _α_ _β[2][ E][q][(][v][)][β][I][ −]_ [E][q][(][w][)][∇][w][ log][ q][(][w][)][∇][w][ log][ q][(][w][)][⊤] 1 = _[β][2]_ = _[β]_ _α_ _β_ **_[I][ −]_** [E][q][(][w][)][∇][w][ log][ q][(][w][)][∇][w][ log][ q][(][w][)][⊤] _α_ [(][I][ −] _[β][E][q][(][w][)][∇][w][ log][ q][(][w][)][∇][w][ log][ q][(][w][)][⊤][)][.]_ Taking the trace, we have Eq(w) tr(Covq(v|w)[v]) **_w log q(w)_** = _[β]_ _||∇_ _||[2]_ _α_ [(1][ −] _[β][E][q][(][w][)]_ _d_ ). **Lemma 12. (Bounded covariance of a bounded distribution) Suppose q(x) is a bounded distribution** _in [a, b][d], then_ tr(Covdq(x)[x]) _≤_ ( _[b][−]2_ _[a]_ [)][2][.] _Proof._ = [E][q][(][x][)][||][x][ −] _[a][+]2_ _[b]_ _[||][2][ −||][E][x][ −]_ _[a][+]2_ _[b]_ _[||][2]_ _d_ = [tr(Cov][q][(][x][)][[][x][ −] _[a][+]2_ _[b]_ [])] tr(Covq(x)[x]) 2 _[||][2]_ _≤_ [E][q][(][x][)][||][x]d[ −] _[a][+][b]_ ( _[b][ −]_ _[a]_ )[2]. _≤_ 2 ----- **Lemma 13. (Convert the moments of q(xn** 1 **_xn) to moments of q(x0_** **_xn)) The optimal solution_** _−_ _|_ _|_ **_µ[∗]n[(][x][n][)][ and][ σ]n[∗][2]_** _[to Eq. (4) can be represented by the first two moments of][ q][(][x][0][|][x][n][)]_ **_µ[∗]n[(][x][n][) = ˜]µn(xn, Eq(x0_** **_xn)x0)_** _|_ 2 _σn[∗][2]_ [=][ λ]n[2] [+] _αn_ 1 _βn_ 1 _λ[2]n_ _αn_ Eq(xn) tr(Covq(x0|xn)[x0]) _−_ _−_ _−_ _−_ _[·]_ s _βn_ ! _d_ q p _where qn(xn) is the marginal distribution of the forward process at timestep n and d is the dimension_ _of the data._ _Proof. According to Lemma 9, the optimal µ[∗]n_ [and][ σ]n[∗][2] [under KL minimization is] **_µ[∗]n[(][x][n][) =][ E]q(xn−1|xn)[[][x][n][−][1][]][,]_** _σn[∗][2]_ [=][ E]qn(xn) tr(Covq(xn−d1|xn)[xn−1]) _._ We further derive µ[∗]n[. Since][ ˜]µn(xn, x0) is linear w.r.t. x0, we have **_µ[∗]n[(][x][n][) =][ E]q(xn_** 1 **_xn)[[][x][n][−][1][] =][ E]q(x0_** **_xn)[E]q(xn_** 1 **_xn,x0)[[][x][n][−][1][]]_** _−_ _|_ _|_ _−_ _|_ =Eq(x0 **_xn) ˜µn(xn, x0) = ˜µn(xn, Eq(x0_** **_xn)x0)._** _|_ _|_ Then we consider σn[∗][2][. According to the law of total variance, we have] Covq(xn 1 **_xn)[xn_** 1] = Eq(x0 **_xn)Covq(xn_** 1 **_xn,x0)[xn_** 1] + Covq(x0 **_xn)Eq(xn_** 1 **_xn,x0)[xn_** 1] _−_ _|_ _−_ _|_ _−_ _|_ _−_ _|_ _−_ _|_ _−_ _αn_ _βn_ )[2]Covq(x0|xn)[x0]. =λ[2]n[I][ + Cov]q(x0 **_xn)µ[˜]_** _n(xn, x0) = λ[2]n[I][ + (]_ _|_ Thereby, _βn−1 −_ _λ[2]n_ _[·]_ _αn−1 −_ _σn[∗][2]_ [=][ E]qn(xn) tr(Covq(xn−1|xn)[xn−1]) _αn_ )[2]Eq(xn) tr(Covq(x0|xn)[x0]) _βn_ _d_ =λ[2]n [+ (] _αn−1 −_ _βn−1 −_ _λ[2]n_ _[·]_ A.2 PROOF OF THEOREM 1 **Theorem 1. (Score representation of the optimal solution to Eq. (4), proof in Appendix A.2)** _The optimal solution µ[∗]n[(][x][n][)][ and][ σ]n[∗][2]_ _[to Eq. (4) are]_ **_µ[∗]n[(][x][n][) = ˜]µn_** _σn[∗][2]_ [=][ λ]n[2] [+] 1 **_xn,_** _√αn_ (xn + βn∇xn log qn(xn)) _,_ (6) 2 _βn_ **_xn log qn(xn)_** _αn_ _−_ _βn−1 −_ _λ[2]n_ 1 − _βnEqn(xn)_ _||∇_ _d_ _||[2]_ _,_ (7) q _where qn(xn) is the marginal distribution of the forward process at the timestep n and d is the_ _dimension of the data._ _Proof. According to Lemma 11 and Lemma 13, we have_ 1 **_µ[∗]n[(][x][n][) = ˜]µn(xn, Eq(x0_** **_xn)x0) = ˜µn(xn,_** (xn + βn **_xn log q(xn))),_** _|_ _√αn_ _∇_ ----- and _αn_ )[2]Eq(xn) tr(Covq(x0|xn)[x0]) _βn_ _d_ _σn[∗][2]_ [=][ λ]n[2] [+ (] _αn−1 −_ _βn−1 −_ _λ[2]n_ _[·]_ _αn_ **_xn log q(xn)_** )[2][ β][n] (1 _βnEq(xn)_ _||∇_ _||[2]_ _βn_ _αn_ _−_ _d_ =λ[2]n [+ (] =λ[2]n [+ (] _βn−1 −_ _λ[2]n_ _[·]_ _αn−1 −_ _βn_ _αn_ _−_ q **_xn log q(xn)_** _βn_ 1 _λ[2]n[)][2][(1][ −]_ _[β]n[E]q(xn)_ _||∇_ _||[2]_ _−_ _−_ _d_ ). A.3 PROOF OF THEOREM 2 **Theorem 2. (Bounds of the optimal reverse variance, proof in Appendix A.3)** _σn[∗][2]_ _[has the following lower and upper bounds:]_ _βn_ _αn_ _λ[2]n_ _[≤]_ _[σ]n[∗][2]_ _[≤]_ _[λ]n[2]_ [+] (11) _βn−1 −_ _λ[2]n_ _If we further assume q(x0) is a bounded distribution in [a, b][d], where d is the dimension of data,_ _then σn[∗][2]_ _[can be further upper bounded by]_ 2 2 _αn_ _b_ _a_ _σn[∗][2]_ _n_ [+] _αn_ 1 _βn_ 1 _λ[2]n_ _−_ _._ (12) _[≤]_ _[λ][2]_ _−_ _−_ q _−_ _−_ _[·]_ s _βn_ ! 2 p _Proof. According to Lemma 13 and Theorem 1, we have_ _βn_ _αn_ _λ[2]n_ _[≤]_ _[σ]n[∗][2]_ _[≤]_ _[λ]n[2]_ [+ (] _βn_ 1 _λ[2]n[)][2][.]_ _−_ _−_ If we further q(x0) assume is a bounded distribution in [a, b][d], then q(x0 **_xn) is also a bounded_** _|_ distribution in [a, b][d]. According to Lemma 12, we have Eq(xn) tr(Covq(x0|xn)[x0]) _d_ Combining with Lemma 13, we have ( _[b][ −]_ _[a]_ )[2]. _≤_ 2 _αn_ )[2]Eq(xn) tr(Covq(x0|xn)[x0]) _βn_ _d_ _σn[∗][2]_ [=][λ]n[2] [+ (] _≤λ[2]n_ [+ (] _αn−1 −_ _αn−1 −_ _βn−1 −_ _λ[2]n_ _[·]_ _βn−1 −_ _λ[2]n_ _[·]_ _αn_ )[2]( _[b][ −]_ _[a]_ )[2]. _βn_ 2 A.4 PROOF OF THE DECOMPOSED OPTIMAL KL **Theorem 3. (Decomposed optimal KL, proof in Appendix A.4)** _The KL divergence between the shorter forward process and its optimal reverse process is_ _DKL(q(x0, xτ1_ _, · · ·, xτK_ )||p[∗](x0, xτ1 _, · · ·, xτK_ )) = _[d]2_ _J(τk−1, τk) + c,_ _k=2_ X _σ[∗][2]_ _where J(τk−1, τk) = log_ _λτk[2]τk−−11||τkτk_ _and c is a constant unrelated to the trajectory τ_ _._ ----- _Proof. According to Lemma 7 and Lemma 9, we have_ _DKL(q(x0, xτ1_ _,_ _, xτK_ ) _p[∗](x0, xτ1_ _,_ _, xτK_ )) _· · ·_ _||_ _· · ·_ =EqDKL(q(x0|xτ1 _, · · ·, xτK_ )||p[∗](x0|x1)) + DKL(q(xτ1 _, · · ·, xτK_ )||p[∗](xτ1 _, · · ·, xτK_ )) =EqDKL(q(x0|xτ1 _, · · ·, xτK_ )||p[∗](x0|x1)) + H(q(xN ), p(xN )) + _[d]_ log(2πeστ[∗]k[2] 1 _τk_ [)][ −] _[H][(][q][(][x][τ]1_ _[,][ · · ·][,][ x][τ]N_ [))] _−_ _|_ _k=2_ X = Eq log p[∗](x0 **_x1) + H(q(xN_** ), p(xN )) + _[d]_ _−_ _|_ 2 = Eq log p[∗](x0 **_x1) + H(q(xN_** ), p(xN )) + _[d]_ _−_ _|_ 2 log(2πeστ[∗]k[2] 1 _τk_ [)][ −] _[H][(][q][(][x][0][,][ x][τ]1_ _[,][ · · ·][,][ x][τ]K_ [))] _−_ _|_ _k=2_ X _K_ log(2πeστ[∗]k[2] 1 _τk_ [)] _−_ _|_ _k=2_ X _H(q(x0))_ _−_ _−_ _[d]2 [log(2][πeβ][N]_ [)][ −] _[d]2_ log(2πeλ[2]τk 1 _τk_ [)] _−_ _|_ _k=2_ X _K_ log _στ[∗]k[2]−1|τk_ _H(q(x0))_ _k=2_ _λ[2]τk−1|τk_ _−_ _−_ _[d]2 [log(2][πeβ][N]_ [)][.] X = Eq log p[∗](x0 **_x1) + H(q(xN_** ), p(xN )) + _[d]_ _−_ _|_ 2 _σ[∗][2]_ Let J(τk−1, τk) = log _λτk[2]τk−−11||τkτk_ and c = −Eq log p[∗](x0|x1) + H(q(xN ), p(xN )) − _H(q(x0)) −_ _d_ 2 [log(2][πeβ][N] [)][, then][ c][ is a constant unrelated to the trajectory][ τ][ and] _DKL(q(x0, xτ1_ _, · · ·, xτK_ )||p[∗](x0, xτ1 _, · · ·, xτK_ )) = _[d]2_ A.5 THE FORMAL RESULT FOR SECTION 5 AND ITS PROOF _J(τk−1, τk) + c._ _k=2_ X Here we present the formal result of the relationship between the score function and the data covariance matrix mentioned in Section 5. **Proposition 1. (Proof in Appendix A.5) The expected conditional covariance matrix of the data** _distribution is determined by the score function ∇xn log qn(xn) as follows:_ Eq(xn)Covq(x0 **_xn)[x0] =_** _[β][n]_ **_I_** _βnEqn(xn)_ **_xn log qn(xn)_** **_xn log qn(xn)[⊤][]_** _,_ (15) _|_ _αn_ _−_ _∇_ _∇_ _which contributes to the data covariance matrix according to the law of total variance_ Covq(x0)[x0] = Eq(xn)Covq(x0 **_xn)[x0] + Covq(xn)Eq(x0_** **_xn)[x0]._** (16) _|_ _|_ _Proof. Since q(xn_ **_x0) =_** (xn _αnx0, βnI), according to Lemma 11, we have_ _|_ _N_ _|[√]_ Eq(xn)Covq(x0 **_xn)[x0] =_** _[β][n]_ (I _βnEqn(xn)_ **_xn log qn(xn)_** **_xn log qn(xn)[⊤])._** _|_ _αn_ _−_ _∇_ _∇_ The law of total variance is a classical result in statistics. Here we prove it for completeness: Eq(xn)Covq(x0 **_xn)[x0] + Covq(xn)Eq(x0_** **_xn)[x0]_** _|_ _|_ =Eq(xn) Eq(x0|xn)x0x[⊤]0 _q(x0|xn)[[][x][0][]][E]q(x0|xn)[[][x][0][]][⊤][]_ _[−]_ [E] + Eq(x n) Eq(x0 **_xn)[x0]Eq(x0_** **_xn)[x0][⊤][]_** Eq(xn)Eq(x0 **_xn)[x0]_** Eq(xn)Eq(x0 **_xn)[x0]_** _⊤_ _|_ _|_ _−_ _|_ _|_ =Eq(x0)x0x [⊤]0 _q(x0)[[][x][0][]][E]q(x0)[[][x][0][]][⊤]_ [= Cov] _q(x0)[[][x][0][]][.]_ _[−]_ [E] ----- **Algorithm 1 The DP algorithm for the least-cost-path problem (Watson et al., 2021)** 1: Input: Cost function J(s, t) and integers K, N (1 ≤ _K ≤_ _N_ ) 2: Output: The least-cost-trajectory 1 = τ1 < · · · < τK = N 3: C ←{∞}1≤k,n≤N, D ←{−1}1≤k,n≤N 4: C[1, 1] ← 0 5: for k = 2 to K do _▷_ Calculate C and D 6: _CJ ←{C[k −_ 1, s] + J(s, n)}1≤s≤N,k≤n≤N 7: _C[k, k :] ←_ (min(CJ[:, k]), min(CJ[:, k + 1]), · · ·, min(CJ[:, N ])) 8: _D[k, k :] ←_ (arg min(CJ[:, k]), arg min(CJ[:, k + 1]), · · ·, arg min(CJ[:, N ])) 9: end for 10: τK = N 11: for k = K to 2 do _▷_ Calculate τ 12:13: end forτk−1 ← _D[k, τk]_ 14: return τ B THE DP ALGORITHM FOR THE LEAST-COST-PATH PROBLEM Given a cost function J(s, t) with 1 ≤ _s < t and k, n ≥_ 1, we want to find a trajectory 1 = _τ1 < · · · < τk = n of k nodes starting from 1 and terminating at n, s.t., the total cost J(τ1, τ2) +_ _J(τ2, τ3) + · · · + J(τk−1, τk) is minimized. Such a problem can be solved by the DP algorithm_ proposed by Watson et al. (2021). Let C[k, n] be the minimized cost of the optimal trajectory, and _D[k, n] be the τk_ 1 of the optimal trajectory. For simplicity, we also let J(s, t) = for s _t_ 1. _−_ _∞_ _≥_ _≥_ 0 _n = 1_ Then for k = 1, we have C[1, n] = and D[1, n] = 1 (here and 1 _N_ _n > 1_ _−_ _∞_ _−_ _∞_ _≥_ represent undefined values for simplicity). For N ≥ _k ≥_ 2, we have _∞_ 1 ≤ _n < k_ min min _N_ _n_ _k,_ ( _k_ 1 _s_ _n_ 1 _[C][[][k][ −]_ [1][, s][] +][ J][(][s, n][) =] 1 _s_ _N_ _[C][[][k][ −]_ [1][, s][] +][ J][(][s, n][)] _≥_ _≥_ _−_ _≤_ _≤_ _−_ _≤_ _≤_ 1 1 _n < k_ _−_ _≤_ ( _k_ arg min1 _s_ _n_ 1 _C[k −_ 1, s] + J(s, n) = arg min1 _s_ _N_ _C[k −_ 1, s] + J(s, n) _N ≥_ _n ≥_ _k._ _−_ _≤_ _≤_ _−_ _≤_ _≤_ _C[k, n] =_ _D[k, n] =_ As long as D is calculated, we can get the optimal trajectory recursively by τK = N and τk 1 = _−_ _D[k, τk]. We summarize the algorithm in Algorithm 1._ C THE BOUNDS OF THE OPTIMAL REVERSE VARIANCE CONSTRAINED ON A TRAJECTORY In Section 4, we derive the optimal reverse variance constrained on a trajectory. Indeed, the optimal reverse variance can also be bounded similar to Theorem 2. We formalize it in Corollary 1. **Corollary 1. (Bounds of the optimal reverse variance constrained on a trajectory)** _στ[∗]k[2]−1|τk_ _[has the following lower and upper bounds:]_ _βτk_ _ατk|τk−1_ _λ[2]τk−1|τk_ _τk−1|τk_ _τk−1|τk_ [+] _[≤]_ _[σ][∗][2]_ _[≤]_ _[λ][2]_ _βτk−1_ _λ[2]τk−1|τk_ _−_ _If we further assume q(x0) is a bounded distribution in [a, b][d], where d is the dimension of data,_ _then σn[∗][2]_ _[can be further upper bounded by]_ 2 _στ[∗]k[2]−1|τk_ _[≤]_ _[λ]τ[2]k−1|τk_ [+] _ατk−1 −_ _βτk−1 −_ _λ[2]τk−1|τk_ _[·]_ s _αβττkk_ ! ( _[b][ −]2_ _[a]_ )[2]. q p ----- D SIMPLIFIED RESULTS FOR THE DDPM FORWARD PROCESS The optimal solution µ[∗]n[(][x][n][)][ and][ σ]n[∗][2] [in Theorem 1 and the bounds of][ σ]n[∗][2] [in Theorem 2 can be] directly simplified for the DDPM forward process by letting λ[2]n [= ˜]βn. We list the simplified results in Corollary 2 and Corollary 3. **Corollary 2. (Simplified score representation of the optimal solution)** _When λ[2]n_ [= ˜]βn, the optimal solution µ[∗]n[(][x][n][)][ and][ σ]n[∗][2] _[to Eq. (4) are]_ 1 **_µ[∗]n[(][x][n][) =]_** (xn + βn **_xn log qn(xn)),_** _√αn_ _∇_ **_xn log qn(xn)_** _σn[∗][2]_ [=][ β][n] (1 _βnEqn(xn)_ _||∇_ _||[2]_ _αn_ _−_ _d_ **Corollary 3. (Simplified bounds of the optimal reverse variance)** _When λ[2]n_ [= ˜]βn, σn[∗][2] _[has the following lower and upper bounds:]_ _β˜n ≤_ _σn[∗][2]_ _[≤]_ _α[β][n]n_ _._ ). _If we further assume q(x0) is a bounded distribution in [a, b][d], where d is the dimension of data,_ _then σn[∗][2]_ _[can be further upper bounded by]_ 2 _σn[∗][2]_ _[≤]_ _β[˜]n +_ _[α][n]β[−]2n[1][β]n[2]_ _b −2_ _a_ _._ As for the shorter forward process defined in Eq. (13), it also includes the DDPM as a special case _β_ when λ[2]τk−1|τk [= ˜]βτk−1|τk, where _β[˜]τk−1|τk :=_ _βτkτk−1_ _βτk|τk−1_ . Similar to Corollary 2, the optimal mean and variance of its reverse process can also be simplified for DDPMs by letting λ[2]τk−1|τk [=] _β˜τk−1|τk_ . Formally, the simplified optimal mean and variance are 1 **_µ[∗]τk−1|τk_** [(][x][τ]k [) =] _√ατk_ _τk_ 1 (xτk + βτk|τk−1 _∇xτk log qτk_ (xτk )), _|_ _−_ _στ[∗]k[2]−1|τk_ [=][ β]α[τ]τ[k]k[|]|[τ]τ[k]k[−]−[1]1 (1 − _βτk|τk−1_ Eqτk (xτk ) _||∇xτk log qd_ _τk_ (xτk )||[2] ). Besides, Theorem 3 can also be simplified for DDPMs. We list the simplified result in Corollary 4. **Corollary 4. (Simplified decomposed optimal KL)** _When λ[2]n_ [= ˜]βn, the KL divergence between the subprocess and its optimal reverse process is _DKL(q(x0, xτ1_ _, · · ·, xτK_ )||p[∗](x0, xτ1 _, · · ·, xτK_ )) = _[d]2_ _J(τk−1, τk) + c,_ _k=2_ X _where J(τk−1, τk) = log(1 −_ _βτk|τk−1_ Eqτk (xτk ) _||∇xτk log qd_ _τk_ (xτk )||[2] ), _and c is a constant unrelated to the trajectory τ_ _._ E EXTENSION TO DIFFUSION PROCESS WITH CONTINUOUS TIMESTEPS Song et al. (2020b) generalizes the diffusion process to continuous timesteps by introducing a stochastic differential equation (SDE) dz = f (t)zdt + g(t)dw. Without loss of generality, we consider the parameterization of f (t) and g(t) introduced by Kingma et al. (2021) _f_ (t) = [1] d log αt dt _,_ _g(t)[2]_ = [d]d[β]t[t] dt _βt,_ _[−]_ [d log][ α][t] ----- where αt and βt are scalar-valued functions satisfying some regular conditions (Kingma et al., 2021) with domain t ∈ [0, 1]. Such a parameterization induces a diffusion process on continuous timesteps _q(x0, z[0,1]), s.t.,_ _q(zt_ **_x0) =_** (zt _αtx0, βtI),_ _t_ [0, 1], _|_ _N_ _|[√]_ _∀_ _∈_ _q(zt|zs) = N_ (zt|[√]αt|szs, βt|sI), _∀0 ≤_ _s < t ≤_ 1, where αt _s := αt/αs and βt_ _s := βt_ _αt_ _sβs._ _|_ _|_ _|_ _−_ E.1 ANALYTIC ESTIMATE OF THE OPTIMAL REVERSE VARIANCE Kingma et al. (2021) introduce p(zs **_zt) =_** (zs **_µs_** _t(zt), σs[2]_ _t[)][ (][s < t][) to reverse from timestep]_ _|_ _N_ _|_ _|_ _|_ _t to timestep s, where σs[2]|t_ [is fixed to][ β]β[s]t _[β][s][|][t][. In contrast, we show that][ σ]s[2]|t_ [also has an optimal] solution in an analytic form of the score function under the sense of KL minimization. According to Lemma 9 and Lemma 11, we have 1 **_µ[∗]s_** _t[(][z][t][) =][ E][q][(][z]s[|][z]t[)][[][z][s][] =]_ (zt + βt _s_ **_zt log q(zt)),_** _|_ _√αt_ _s_ _|_ _∇_ _|_ _σs[∗]|[2]t_ [=][ E][q] tr(Covq(zds|zt)[zs]) = _α[β][t]t[|]|[s]s_ (1 − _βt|sEq(zt)_ _||∇zt logd q(zt)||[2]_ ). Thereby, both the optimal mean and variance have a closed form expression w.r.t. the score function. In this case, we first estimate the expected mean squared norm of the score function by Γt for _t ∈_ [0, 1], where **_st(zt)_** Γt = Eq(zt) _||_ _||[2]_ _._ _d_ Notice that there are infinite timesteps in [0, 1]. In practice, we can only choose a finite number of timesteps 0 = t1 < _< tN = 1 and calculate Γtn_ . For a timestep t between tn 1 and tn, we can _· · ·_ _−_ use a linear interpolation between Γtn−1 and Γtn . Then, we can estimate σs[∗]|[2]t [by] _σˆs[2]_ _t_ [=][ β][t][|][s] (1 _βt_ _sΓt)._ _|_ _αt|s_ _−_ _|_ E.2 ANALYTIC ESTIMATION OF THE OPTIMAL REVERSE TRAJECTORY Now we consider optimize the trajectory 0 = τ1 < · · · < τK = 1 in the sense of KL minimization min _τ1,_ _,τK_ _[D][KL][(][q][(][x][0][,][ z][τ][1]_ _[,][ · · ·][,][ z][τ][K]_ [)][||][p][∗][(][x][0][,][ z][τ][1] _[,][ · · ·][,][ z][τ][K]_ [))][.] _···_ Similar to Theorem 3, the optimal KL is _DKL(q(x0, zτ1_ _, · · ·, zτK_ )||p[∗](x0, zτ1 _, · · ·, zτK_ )) = _[d]2_ _J(τk−1, τk) + c,_ _k=2_ X where J(τk−1, τk) = log(1 − _βτk|τk−1_ Eq _||∇zτk logd q(zτk )||[2]_ ) and c is unrelated to τ . The difference is that J(s, t) is defined on a continuous range 0 ≤ _s < t ≤_ 1 and the DP algorithm is not directly applicable. However, we can restrict J(s, t) on a finite number of timesteps 0 = t1 < · · · < tN = 1. Then we can apply the DP algorithm (see Algorithm 1) to the restricted J(s, t). ----- F EXPERIMENTAL DETAILS F.1 DETAILS OF SCORE-BASED MODELS [The CelebA 64x64 pretrained score-based model is provided in the official code (https://](https://github.com/ermongroup/ddim) [github.com/ermongroup/ddim) of Song et al. (2020a). The LSUN Bedroom pretrained](https://github.com/ermongroup/ddim) [score-based model is provided in the official code (https://github.com/hojonathanho/](https://github.com/hojonathanho/diffusion) [diffusion) of Ho et al. (2020). Both of them have a total of N = 1000 timesteps and use the](https://github.com/hojonathanho/diffusion) linear schedule (Ho et al., 2020) as the forward noise schedule. The ImageNet 64x64 pretrained score-based model is the unconditional Lhybrid model provided [in the official code (https://github.com/openai/improved-diffusion) of Nichol](https://github.com/openai/improved-diffusion) & Dhariwal (2021). The model includes both the mean and variance networks, where the mean network is trained with Eq. (5) as the standard DDPM (Ho et al., 2020) and the variance network is trained with the Lvb objective. We only use the mean network. The model has a total of N = 4000 timesteps and its forward noise schedule is the cosine schedule (Nichol & Dhariwal, 2021). The CIFAR10 score-based models are trained by ourselves. They have a total of N = 1000 timesteps and are trained with the linear forward noise schedule and the cosine forward noise schedule respectively. We use the same U-Net model architecture to Nichol & Dhariwal (2021). Following Nichol & Dhariwal (2021), we train 500K iterations with a batch size of 128, use a learning rate of 0.0001 with the AdamW optimizer (Loshchilov & Hutter, 2017) and use an exponential moving average (EMA) with a rate of 0.9999. We save a checkpoint every 10K iterations and select the checkpoint according to the FID results on 1000 samples generated under the reverse variance _σn[2]_ [=][ β][n] [and full timesteps.] F.2 LOG-LIKELIHOOD AND SAMPLING Following Ho et al. (2020), we linearly scale the image data consisting of integers in {0, 1, · · ·, 255} to [ 1, 1], and discretize the last reverse Markov transition p(x0 **_x1) to obtain discrete log-_** _−_ _|_ likelihoods for image data. Following Ho et al. (2020), at the end of sampling, we only display the mean of p(x0 **_x1) and discard_** _|_ the noise. This is equivalent to setting a clipping threshold of zero for the noise scale σ1. Inspired by this, when sampling, we also clip the noise scale σ2 of p(x1|x2), such that E|σ2ϵ| ≤ 2552 _[y][,]_ where ϵ is the standard Gaussian noise and y is the maximum tolerated perturbation of a channel. It improves the sample quality, especially for our analytic estimate (see Appendix G.4). We clip σ2 for all methods compared in Table 2, and choose y ∈{1, 2} according to the FID score. We find y = 2 works better on CIFAR10 (LS) and CelebA 64x64 with Analytic-DDPM. For other cases, we find _y = 1 works better._ [We use the official implementation of FID to pytorch (https://github.com/mseitzer/](https://github.com/mseitzer/pytorch-fid) [pytorch-fid). We calculate the FID score on 50K generated samples on all datasets. Follow-](https://github.com/mseitzer/pytorch-fid) ing Nichol & Dhariwal (2021), the reference distribution statistics are computed on the full training set for CIFAR10 and ImageNet 64x64. For CelebA 64x64 and LSUN Bedroom, the reference distribution statistics is computed on 50K training samples. F.3 CHOICE OF THE NUMBER OF MONTE CARLO SAMPLES AND CALCULATION OF Γ We use a maximal M without introducing too much computation. Specifically, we set M = 50000 on CIFAR10, M = 10000 on CelebA 64x64 and ImageNet 64x64 and M = 1000 on LSUN Bedroom by default without a sweep. All of the samples are from the training dataset. We use the default settings of M for all results in Table 1, Table 2 and Table 3. We only calculate Γ in Eq. (8) once for a pretrained model, and Γ is reused during inference under different settings (e.g., trajectories of smaller K) in Table 1, Table 2 and Table 3. ----- F.4 IMPLEMENTATION OF THE EVEN TRAJECTORY We follow Nichol & Dhariwal (2021) for the implementation of the even trajectory. Given the number of timesteps K of a trajectory, we firstly determine the stride a = _KN_ _−11_ [. Then the][ k][th] _−_ timestep is determined as round(1 + a(k − 1)). F.5 EXPERIMENTAL DETAILS OF TABLE 3 In Table 3, the results of DDPM, DDIM and Analytic-DPM are based on the same scorebased models (i.e., those listed in Section F.1). We get the results of Improved DDPM by run[ning its official code and unconditional Lhybrid models (https://github.com/openai/](https://github.com/openai/improved-diffusion) [improved-diffusion). As shown in Table 4, on the same dataset, the sizes as well as the](https://github.com/openai/improved-diffusion) averaged time of a single function evaluation of these models are almost the same. Table 4: Model size and the averaged time to run a model function evaluation with a batch size of 10 on one GeForce RTX 2080 Ti. CIFAR10 CelebA 64x64 LSUN Bedroom DDPM, DDIM, Analytic-DPM 200.44 MB / 29 ms 300.22 MB / 50 ms 433.63 MB / 438 ms Improved DDPM 200.45 MB / 30 ms Missing model 433.64 MB / 439 ms The DDPM and DDIM results on CIFAR10 are based on the quadratic trajectory following Song et al. (2020a), which gets better FID than the even trajectory. The Analytic-DPM result is based on the DDPM forward process on LSUN Bedroom, and based on the DDIM forward process on other datasets. These choices achieve better efficiency than their alternatives. ----- G ADDITIONAL RESULTS G.1 VISUALIZATION OF REVERSE VARIANCES AND VARIATIONAL BOUND TERMS Figure 1 visualizes the reverse variances and Lvb terms on CIFAR10 with the linear forward noise schedule (LS). In Figure 2, we show more DDPM results on CIFAR10 with the cosine forward noise schedule (CS), CelebA 64x64 and ImageNet 64x64. 16 2 2 2 7 2 12 2 3 2 2 14 2 9 13 2 7 2 8 2 variance variance2 11 2[3] variance2 11 2[3] 2 14 n n 2n 2 13 n n 2n 2 15 2[3] n n 2n 2[2] 2[5] 2[8] 2[2] 2[5] 2[8] 2[3] 2[7] 2[11] timestep n timestep n timestep n (a) CIFAR10 (CS) 0.4 n n 2n 0.3 n n 2n 0.6 n n 2n (bits/dim)0.3 (bits/dim)0.2 0.1 (bits/dim)0.4 0.4 0.2 term 0.1 0.1 term 0.1 term 0.2 Lvb Lvb Lvb 2[0] 2[1] 2[2] 2[2] 2[2] 2[5] 2[8] 2[2] 2[5] 2[8] 2[2] 2[5] 2[8] 2[11] timestep n timestep n timestep n (d) CIFAR10 (CS) (b) CelebA 64x64 n 2[2] 2[2] 2[5] timestep n (e) CelebA 64x64 (c) ImageNet 64x64 n n 2[0] 2[2] 2[5] 2[8] timestep n (f) ImageNet 64x64 0.3 0.6 Figure 2: Comparing our analytic estimate ˆσn[2] [and prior works with handcrafted variances][ β][n] [and] _β˜n. (a-c) compare the values of the variance of different timesteps. (d-e) compare the term in Lvb_ corresponding to each timestep. The value of Lvb is the area under the corresponding curve. G.2 ABLATION STUDY ON THE NUMBER OF MONTE CARLO SAMPLES We show that only a small number of Monte Carlo (MC) samples M in Eq. (8) is enough for a small MC variance. As shown in Figure 3, the values of Γn with M = 100 and M = 50000 Monte Carlo samples are almost the same in a single trial. To explicitly see the variance, in Figure 4 and Figure 5, we plot the mean, the standard deviation and the relative standard deviation (RSD) (i.e., the ratio of the standard deviation to the mean) of a single Monte Carlo sample _[||][s][n][(][x]d_ _[n][)][||][2]_, xn _qn(xn) and_ Γn with different M respectively on CIFAR10 (LS). In all cases, the RSD decays fast as ∼ _n increases._ When n is small (e.g., n = 1), using M = 10 Monte Carlo samples can ensure that the RSD of Γn is below 0.1, and using M = 100 Monte Carlo samples can ensure that the RSD of Γn is about 0.025. When n > 100, the RSD of a single Monte Carlo sample is below 0.05, and using only M = 1 Monte Carlo sample can ensure the RSD of Γn is below 0.05. Overall, a small M like 10 and 100 is sufficient for a small Monte Carlo variance. Furthermore, we show that Analytic-DPM with a small M like 10 and 100 has a similar performance to that with a large M . As shown in Figure 6 (a), using M = 100 or M = 50000 almost does not affect the likelihood results on CIFAR10 (LS). In Table 5 (a), we show results with even smaller M (e.g., M = 1, 3, 10). Under both the NLL and FID metrics, M = 10 achieves a similar result to that of M = 50000. The results are similar on ImageNet 64x64, as shown in Figure 6 (b) and Table 5 (b). Notably, the expected performance of FID is almost not influenced by the choice of M . As a result, Analytic-DPM consistently improves the baselines using a much smaller M (e.g., M = 10), as shown in Table 6. ----- M=50000 4000 M=100 3000 n 2000 1000 0 10[0] 10[1] 10[2] 10[3] timestep n 15000 M=10000M=100 10000 n 5000 0 10[0] 10[1] 10[2] 10[3] timestep n (a) CIFAR10 (LS) (b) ImageNet 64x64 Figure 3: The value of Γn in a single trial with different number of Monte Carlo samples M . 4000 3000 2000 1000 0 10[0] 10[1] 10[2] 10[3] timestep n 1250 1000 750 500 250 0 10[0] 10[1] 10[2] 10[3] timestep n 0.25 0.20 0.15 0.10 0.05 10[0] 10[1] 10[2] 10[3] timestep n (a) Mean (b) Standard deviation (c) Relative standard deviation Figure 4: The mean, the standard deviation and the relative standard deviation (RSD) (i.e., the ratio of the standard deviation to the mean) of a single Monte Carlo sample _[||][s][n][(][x]d_ _[n][)][||][2]_, xn _qn(xn) at_ different n on CIFAR10 (LS). These values are estimated by 50000 samples. _∼_ 4000 3000 2000 1000 0 10[0] 10[1] 10[2] 10[3] timestep n 1250 M=1 1000 M=10M=100 750 500 250 0 10[0] 10[1] 10[2] 10[3] timestep n 0.25 M=1 M=10 0.20 M=100 0.15 0.10 0.05 0.00 10[0] 10[1] 10[2] 10[3] timestep n (a) Mean (b) Standard deviation (c) Relative standard deviation Figure 5: The mean, the standard deviation and the relative standard deviation (RSD) (i.e., the ratio of the standard deviation to the mean) of Γn with different number of Monte Carlo samples M at different n on CIFAR10 (LS). These values are directly calculated from the mean, the standard deviation and the RSD of _[||][s][n][(][x]d_ _[n][)][||][2]_, xn _qn(xn) presented in Figure 4._ _∼_ ----- 5.5 5.0 (bits/dim)4.5 nll 4.0 M=50000 M=100 3.5 10[1] 10[2] 10[3] # timesteps K 5.0 4.5 (bits/dim) nll 4.0 M=10000 M=100 10[1] 10[2] 10[3] # timesteps K (a) CIFAR10 (LS) (b) ImageNet 64x64 Figure 6: The curves of NLL v.s. the number of timesteps K in a trajectory with different number of Monte Carlo samples M, evaluated under σn[2] [= ˆ]σn[2] [and the even trajectory.] Table 5: The negative log-likelihood (NLL) and the FID results of Analytic-DPM with different number of Monte Carlo samples M . The results with M = 1, 3, 10, 100 are averaged by 5 runs. All results are evaluated under the DDPM forward process and the even trajectory. We use K = 10 for CIFAR10 (LS) and K = 25 for ImageNet 64x64. (a) CIFAR10 (LS) NLL ↓ FID ↓ _M = 1_ 6.220±1.126 34.05±4.97 _M = 3_ 5.689±0.424 34.29±2.88 _M = 10_ 5.469±0.005 33.69±2.10 _M = 100_ 5.468±0.004 34.63±0.68 _M = 50000_ 5.471 34.26 (b) ImageNet 64x64 NLL ↓ FID ↓ _M = 1_ 4.943±0.162 31.59±5.11 _M = 3_ 4.821±0.055 31.98±1.19 _M = 10_ 4.791±0.017 31.93±1.02 _M = 100_ 4.785±0.003 31.93±0.69 _M = 10000_ 4.783 32.56 Table 6: The NLL and FID comparison between Analytic-DDPM with M = 10 Monte Carlo samples and DDPM. Results are evaluated under the even trajectory on CIFAR10 (LS). # timesteps K 10 25 50 100 200 400 NLL ↓ Analytic-DDPM (M = 10) 5.47 4.80 4.38 4.07 3.85 3.71 DDPM 6.99 6.11 5.44 4.86 4.39 4.07 FID ↓ Analytic-DDPM (M = 10) 33.69 11.99 7.24 5.39 4.19 3.58 DDPM 44.45 21.83 15.21 10.94 8.23 4.86 G.3 TIGHTNESS OF THE BOUNDS In Section 3.1 and Appendix C, we derive upper and lower bounds of the optimal reverse variance. In this section, we show these bounds are tight numerically in practice. In Figure 7, we plot the combined upper bound (i.e., the minimum of the upper bounds in Eq. (11) and Eq. (12)) and the lower bound on CIFAR10. As shown in Figure 7 (a,c), the two bounds almost overlap under the fulltimesteps (K=N ) trajectory. When the trajectory has a smaller number of timesteps (e.g., K=100), the two bounds also overlap when the timestep τk is large. These results empirically validate that our bounds are tight, especially when the timestep is large. ----- 2 2 2 2 combined UBLB combined UBLB 2 2 combined UBLB 2 2 combined UBLB 2 8 2 8 2 8 2 8 2 14 2 14 2 14 2 14 2[2] 2[5] 2[8] 2[2] 2[5] 2[8] 2[2] 2[5] 2[8] 2[2] 2[5] 2[8] timestep n timestep k timestep n timestep k (a) LS, K=N (b) LS, K=100 (c) CS, K=N (d) CS, K=100 Figure 7: The combined upper bound (UB) and the lower bound (LB) under full-timesteps (K=N ) and 100-timesteps (K=100) trajectories on CIFAR10 (LS) and CIFAR10 (CS). In Figure 8, we also plot the two upper bounds in Eq. (11) and Eq. (12) individually. The upper bound in Eq. (11) is tighter when the timestep is small and the other one is tighter when the timestep is large. Thereby, both upper bounds contribute to the combined upper bound. 2 2 2 1 UB in Eq.(11) UB in Eq.(11) 2[5] UB in Eq.(12) 2[12] UB in Eq.(12) 2 6 2 4 2 2 2[4] 2 10 UB in Eq.(11) 2 7 UB in Eq.(11) 2 9 2 4 UB in Eq.(12) UB in Eq.(12) 200 500 800 200 500 800 200 500 800 200 500 800 timestep n timestep k timestep n timestep k (a) LS, K=N (b) LS, K=100 (c) CS, K=N (d) CS, K=100 Figure 8: The upper bounds (UB) in Eq. (11) and Eq. (12) under full-timesteps (K=N ) and 100timesteps (K=100) trajectories on CIFAR10 (LS) and CIFAR10 (CS). To see how these bounds work in practice, in Figure 9, we plot the probability that ˆσn[2] [is clipped] by the bounds in Theorem 2 with different number of Monte Carlo samples M on CIFAR10 (LS). For all M, the curves of ratio v.s. n are similar and the estimate is clipped more frequently when n is large. This is as expected because when n is large, the gap between the upper bound in Eq. (12) and the lower bound in Eq. (11) tends to zero. The results also agree with the plot of the bounds in Figure 7. Besides, the similarity of results between different M implies that the clipping by bounds occurs mainly due to the error of the score-based model sn(xn), instead of the randomness in Monte Carlo methods. 1.0 M=1 M=10 0.8 M=50 M=100 0.6 M=500 M=1000 ratio M=50000 0.4 0.2 0.0 0 200 400 600 800 1000 timestep n Figure 9: The probability that ˆσn[2] [is clipped by the bounds in Theorem 2 with different number of] Monte Carlo samples M on CIFAR10 (LS). The probability is estimated by the ratio of ˆσn[2] [being] clipped in 100 independent trials. The results are evaluated with full timesteps K = N . ----- G.4 ABLATION STUDY ON THE CLIPPING OF σ2 DESIGNED FOR SAMPLING This section validates the argument in Appendix F.2 that properly clipping the noise scale σ2 in _p(x1_ **_x2) leads to a better sample quality. As shown in Figure 10 and Figure 11, it greatly improves_** _|_ the sample quality of our analytic estimate. The curves of clipping and no clipping overlap as K increases, since σ2 is below the threshold for a large K. Indeed, as shown in Table 7, the clipping threshold designed for sampling in Appendix F.2 is 1 to 3 orders of magnitude smaller than the combined upper bound in Theorem 2 (i.e., the minimum of the upper bounds in Eq. (11) and Eq. (12)) when K is small. As shown in Figure 12, clipping σ2 also slightly improves the sample quality of the handcrafted reverse variance σn[2] [=][ β][n] [used in the original DDPM (Ho et al., 2020). As for the other two] variances, i.e., σn[2] [= ˜]βn in the original DDPM and σn[2] [=][ λ]n[2] [= 0][ in the original DDIM (Song et al.,] 2020a), their σ2 generally don’t exceed the threshold and thereby clipping doesn’t affect the result. 75 clipping clipping 75 clipping 40 clipping no clipping 75 no clipping no clipping no clipping FID 50 FID 50 FID 50 FID 30 25 25 25 20 0 0 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[2] 10[3] # timesteps K # timesteps K # timesteps K # timesteps K (a) CIFAR10 (LS) (b) CIFAR10 (CS) (c) CelebA 64x64 (d) ImageNet 64x64 Figure 10: Ablation study on clipping σ2, evaluated under Analytic-DDPM. 75 clipping 60 clipping 60 clipping 30 clipping no clipping no clipping no clipping no clipping 50 40 40 25 FID FID FID FID 25 20 20 20 0 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[2] 10[3] # timesteps K # timesteps K # timesteps K # timesteps K (a) CIFAR10 (LS) (b) CIFAR10 (CS) (c) CelebA 64x64 (d) ImageNet 64x64 Figure 11: Ablation study on clipping σ2, evaluated under Analytic-DDIM. 300 300 clipping 200 clipping clipping 150 clipping no clipping no clipping no clipping no clipping 200 200 100 FID FID 100 FID FID 100 100 50 0 0 0 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[2] 10[3] # timesteps K # timesteps K # timesteps K # timesteps K (a) CIFAR10 (LS) 300 clipping no clipping 200 100 0 10[1] 10[2] # timesteps K (c) CelebA 64x64 (b) CIFAR10 (CS) (d) ImageNet 64x64 Figure 12: Ablation study on clipping σ2, evaluated under DDPM with σn[2] [=][ β][n][.] ----- Table 7: Comparing the values of (i) the threshold in Appendix F.2 used to clip σ2[2] [designed for sam-] pling, (ii) the combined upper bound in Theorem 2 when n = 2, (iii) the lower bound in Theorem 2 when n = 2 and (iv) our analytic estimate ˆσ2[2][. We show comparison results on different datasets and] different forward processes when K is small. Model \ # timesteps K 10 25 50 100 CIFAR10 (LS) Threshold (y=2) 3.87 × 10[−][4] 3.87 × 10[−][4] 3.87 × 10[−][4] 3.87 × 10[−][4] Upper bound 1.45 10[−][1] 2.24 10[−][2] 6.20 10[−][3] 2.10 10[−][3] DDPM _×_ _×_ _×_ _×_ Lower bound 9.99 × 10[−][5] 9.96 × 10[−][5] 9.84 × 10[−][5] 9.55 × 10[−][5] _σˆ2[2]_ 8.70 10[−][3] 2.99 10[−][3] 1.32 10[−][3] 6.54 10[−][4] _×_ _×_ _×_ _×_ Threshold (y=1) 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] Upper bound 1.37 10[−][1] 1.96 10[−][2] 4.82 10[−][3] 1.36 10[−][3] DDIM _×_ _×_ _×_ _×_ Lower bound 0 0 0 0 _σˆ2[2]_ 8.17 10[−][3] 2.54 10[−][3] 9.66 10[−][4] 3.73 10[−][4] _×_ _×_ _×_ _×_ CIFAR10 (CS) Threshold (y=1) 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] Upper bound 3.56 10[−][2] 6.15 10[−][3] 1.85 10[−][3] 6.80 10[−][4] DDPM _×_ _×_ _×_ _×_ Lower bound 4.12 × 10[−][5] 4.10 × 10[−][5] 4.04 × 10[−][5] 3.89 × 10[−][5] _σˆ2[2]_ 3.90 10[−][3] 1.28 10[−][3] 5.61 10[−][4] 2.75 10[−][4] _×_ _×_ _×_ _×_ Threshold (y=1) 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] Upper bound 3.33 10[−][2] 5.22 10[−][3] 1.37 10[−][3] 4.18 10[−][4] DDIM _×_ _×_ _×_ _×_ Lower bound 0 0 0 0 _σˆ2[2]_ 3.61 10[−][3] 1.06 10[−][3] 3.95 10[−][4] 1.53 10[−][4] _×_ _×_ _×_ _×_ CelebA 64x64 Threshold (y=2) 3.87 × 10[−][4] 3.87 × 10[−][4] 3.87 × 10[−][4] 3.87 × 10[−][4] Upper bound 1.45 × 10[−][1] 2.24 × 10[−][2] 6.20 × 10[−][3] 2.10 × 10[−][3] Lower bound 9.99 × 10[−][5] 9.96 × 10[−][5] 9.84 × 10[−][5] 9.55 × 10[−][5] _σˆ2[2]_ 4.04 10[−][3] 1.54 10[−][3] 7.54 10[−][4] 4.06 10[−][4] _×_ _×_ _×_ _×_ Threshold (y=1) 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] Upper bound 1.37 × 10[−][1] 1.96 × 10[−][2] 4.82 × 10[−][3] 1.36 × 10[−][3] Lower bound 0 0 0 0 _σˆ2[2]_ 3.74 10[−][3] 1.26 10[−][3] 5.17 10[−][4] 2.11 10[−][4] _×_ _×_ _×_ _×_ DDPM DDIM Model \ # timesteps K 25 50 100 200 ImageNet 64x64 Threshold (y=1) 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] Upper bound 5.93 × 10[−][3] 1.84 × 10[−][3] 6.44 × 10[−][4] 2.61 × 10[−][4] Lower bound 9.85 × 10[−][6] 9.81 × 10[−][6] 9.72 × 10[−][6] 9.51 × 10[−][6] _σˆ2[2]_ 1.40 10[−][3] 6.05 10[−][4] 2.77 10[−][4] 1.39 10[−][4] _×_ _×_ _×_ _×_ Threshold (y=1) 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] 9.66 × 10[−][5] Upper bound 5.46 × 10[−][3] 1.59 × 10[−][3] 5.03 × 10[−][4] 1.77 × 10[−][4] Lower bound 0 0 0 0 _σˆ2[2]_ 1.28 10[−][3] 5.17 10[−][4] 2.12 10[−][4] 9.11 10[−][5] _×_ _×_ _×_ _×_ DDPM DDIM ----- G.5 SAMPLE QUALITY COMPARISON BETWEEN DIFFERENT TRAJECTORIES While the optimal trajectory (OT) significantly improves the likelihood results, it doesn’t lead to better FID results. As shown in Figure 13, the even trajectory (ET) has better FID results. Such a behavior essentially roots in the different natures of the two metrics and has been investigated in extensive prior works (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021; Vahdat et al., 2021; Watson et al., 2021; Kingma et al., 2021). 75 ET ET 40 ET 80 ET OT 40 OT OT OT 50 60 FID FID FID FID 20 20 40 25 20 0 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[1] 10[2] 10[3] 10[2] 10[3] # timesteps K # timesteps K # timesteps K # timesteps K (a) CIFAR10 (LS) (b) CIFAR10 (CS) (c) CelebA 64x64 (d) ImageNet 64x64 Figure 13: FID results with ET and OT, evaluated under Analytic-DDPM. G.6 ADDITIONAL LIKELIHOOD COMPARISON We compare our Analytic-DPM to Improved DDPM (Nichol & Dhariwal, 2021) that predicts the reverse variance by a neural network. The comparison is based on the ImageNet 64x64 model described in Appendix F.1. As shown in Table 8, with full timesteps, Analytic-DPM achieves a NLL of 3.61, which is very close to 3.57 achieved by predicting the reverse variance in Improved DDPM. Besides, we also notice that the ET reduces the log-likelihood performance of Improved DDPM when K is small, and this is consistent with what Nichol & Dhariwal (2021) report. In contrast, our Analytic-DPM performs well with the ET. Table 8: Negative log-likelihood (bits/dim) ↓ under the DDPM forward process on ImageNet 64x64. All are evaluated under the even trajectory (ET). Model \ # timesteps K 25 50 100 200 400 1000 4000 Improved DDPM 18.91 8.46 5.27 4.24 3.86 **3.68** **3.57** Analytic-DDPM **4.78** **4.42** **4.15** **3.95** **3.81** 3.69 3.61 G.7 CELEBA 64X64 RESULTS WITH A SLIGHTLY DIFFERENT IMPLEMENTATION OF THE EVEN TRAJECTORY Song et al. (2020a) use a slightly different implementation of the even trajectory on CelebA 64x64. They choose a different stride a = int( _K[N]_ [)][, and the][ k][th timestep is determined as][ 1 +][ a][(][k][ −] [1)][. As] shown in Table 9, under the setting of Song et al. (2020a) on CelebA 64x64, our Analytic-DPM still improves the original DDIM consistently and improves the original DDPM in most cases. G.8 COMPARISON TO OTHER CLASSES OF GENERATIVE MODELS While DPMs and their variants serve as the most direct baselines to validate the effectiveness of our method, we also compare with other classes of generative models in Table 10. Analytic-DPM achieves competitive sample quality results among various generative models, and meanwhile significantly reduces the efficiency gap between DPMs and other models. ----- Table 9: FID ↓ on CelebA 64x64, following the even trajectory implementation of Song et al. (2020a). _[†]Original results in Song et al. (2020a)._ _[‡]Our reproduced results._ Model \ # timesteps K 10 20 50 100 1000 CelebA 64x64 DDPM, σn[2] [= ˜]βn[†] 33.12 26.03 18.48 13.93 5.98 DDPM, σn[2] [= ˜]βn[‡] 33.13 25.95 18.61 13.92 5.95 DDPM, σn[2] [=][ β][n][†] 299.71 183.83 71.71 45.20 **3.26** DDPM, σn[2] [=][ β][n][‡] 299.88 185.21 71.86 45.15 **3.21** Analytic-DDPM **25.88** **17.40** **10.98** **7.95** 5.21 DDIM, σn[2] [=][ λ]n[2] [= 0][†] 17.33 13.73 9.17 6.53 3.51 DDIM, σn[2] [=][ λ]n[2] [= 0][‡] 17.38 13.72 9.17 6.51 3.40 Analytic-DDIM **12.74** **9.50** **5.96** **4.14** **3.13** Table 10: Comparison to other classes of generative models on CIFAR10. We show the FID results, the number of model function evaluations (NFE) to generate a single sample and the time to generate 10 samples with a batch size of 10 on one GeForce RTX 2080 Ti. Method FID↓ NFE ↓ Time (s) ↓ Analytic-DPM, K = 25 (ours) 5.81 25 0.73 DDPM, K = 90 (Ho et al., 2020) 6.12 90 2.64 DDIM, K = 30 (Song et al., 2020a) 5.85 30 0.88 Improved DDPM, K = 45 (Nichol & Dhariwal, 2021) 5.96 45 1.37 SNGAN (Miyato et al., 2018) 21.7 1 - BigGAN (cond.) (Brock et al., 2018) 14.73 1 - StyleGAN2 (Karras et al., 2020a) 8.32 1 - StyleGAN2 + ADA (Karras et al., 2020a) 2.92 1 - NVAE (Vahdat & Kautz, 2020) 23.5 1 - Glow (Kingma & Dhariwal, 2018) 48.9 1 - EBM (Du & Mordatch, 2019) 38.2 60 - VAEBM (Xiao et al., 2020) 12.2 16 - ----- G.9 SAMPLES In Figure 14-17, we show Analytic-DDIM constrained on a short trajectory of K = 50 timesteps can generate samples comparable to these under the best FID setting. In Figure 18-21, we also show samples of both Analytic-DDPM and Analytic-DDIM constrained on trajectories of different number of timesteps K. (a) Best FID samples (b) Analytic-DDIM, K = 50 Figure 14: Generated samples on CIFAR10 (LS). (a) Best FID samples (b) Analytic-DDIM, K = 50 Figure 15: Generated samples on CIFAR10 (CS). ----- (a) Best FID samples (b) Analytic-DDIM, K = 50 Figure 16: Generated samples on CelebA 64x64. (a) Best FID samples (b) Analytic-DDIM, K = 50 Figure 17: Generated samples on ImageNet 64x64. ----- (a) Analytic-DDPM, K = 10 (b) Analytic-DDPM, K = 100 (c) Analytic-DDPM, K = 1000 (d) Analytic-DDIM, K = 10 (e) Analytic-DDIM, K = 100 (f) Analytic-DDIM, K = 1000 Figure 18: Generated samples on CIFAR10 (LS). (a) Analytic-DDPM, K = 10 (b) Analytic-DDPM, K = 100 (c) Analytic-DDPM, K = 1000 (d) Analytic-DDIM, K = 10 (e) Analytic-DDIM, K = 100 (f) Analytic-DDIM, K = 1000 Figure 19: Generated samples on CIFAR10 (CS). ----- (a) Analytic-DDPM, K = 10 (b) Analytic-DDPM, K = 100 (c) Analytic-DDPM, K = 1000 (d) Analytic-DDIM, K = 10 (e) Analytic-DDIM, K = 100 (f) Analytic-DDIM, K = 1000 Figure 20: Generated samples on CelebA 64x64. (a) Analytic-DDPM, K = 25 (b) Analytic-DDPM, K = 200 (c) Analytic-DDPM, K = 4000 (d) Analytic-DDIM, K = 25 (e) Analytic-DDIM, K = 200 (f) Analytic-DDIM, K = 4000 Figure 21: Generated samples on ImageNet 64x64. ----- H ADDITIONAL DISCUSSION H.1 THE EXTRA COST OF THE MONTE CARLO ESTIMATE The extra cost of the Monte Carlo estimate Γ is small compared to the whole inference cost. In fact, the Monte Carlo estimate requires MN additional model function evaluations. During inference, suppose we generate M1 samples or calculate the log-likelihood of M1 samples with K timesteps. Both DPMs and Analytic-DPMs need M1K model function evaluations. Employing the same scorebased models, the relative additional cost of Analytic-DPM is _MMN1K_ [. As shown in Appendix G.2,] a very small M (e.g., M = 10, 100) is sufficient for Analytic-DPM, making the relative additional cost small if not negligible. For instance, on CIFAR10, let M = 10, N = 1000, M1 = 50000 and _K_ 10, we obtain _MMN1K_ presented in Table 6. ≥ _[≤]_ [0][.][02][ and Analytic-DPM still consistently improves the baselines as] Further, the additional calculation of the Monte Carlo estimate occurs only once given a pretrained model and training dataset, since we can save the results of Γ = (Γ1, _, ΓN_ ) in Eq.(8) and reuse _· · ·_ it among different inference settings (e.g., trajectories of various K). The reuse is valid, because the marginal distribution of a shorter forward process q(x0, xτ1 _, · · ·, xτK_ ) at timestep τk is the same as that of the full-timesteps forward process q(x0:N ) at timestep n = τk. Indeed, in our experiments (e.g., Table 1,2), Γ is shared across different selections of K, trajectories and forward processes. Moreover, in practice, Γ can be calculated offline and deployed together with the pretrained model and the online inference cost of Analytic-DPM is exactly the same as DPM. H.2 THE STOCHASTICITY OF THE VARIATIONAL BOUND AFTER PLUGGING THE ANALYTIC ESTIMATE In this part, we write Lvb as Lvb(σn[2] [)][ to emphasize its dependence on the reverse variance][ σ]n[2] [.] When calculating the variational bound Lvb(σn[2] [)][ (i.e., the negative ELBO) of Analytic-DPM, we] will plug ˆσn[2] [into the variational bound and get][ L][vb][(ˆ]σn[2] [)][. Since][ ˆ]σn[2] [is calculated by the Monte Carlo] method, Lvb(ˆσn[2] [)][ is a stochastic variable. A natural question is that whether][ L][vb][(ˆ]σn[2] [)][ is a stochastic] bound of Lvb(E[ˆσn[2] [])][, which can be judged by the Jensen’s inequality if][ L][vb] [is convex or concave.] However, this is generally not guaranteed, as stated in Proposition 2. **Proposition 2. Lvb(σn[2]** [)][ is neither convex nor concave w.r.t.][ σ]n[2] _[.]_ _Proof. Since σn[2]_ [only influences the][ n][-th term][ L][n] [in the variational bound][ L][vb][, where] EqDKL(q(xn 1 **_xn, x0)_** _p(xn_ 1 **_xn))_** 2 _n_ _N_ _Ln =_ _−_ _|_ _||_ _−_ _|_ _≤_ _≤_ _−Eq log p(x0|x1)_ _n = 1_ we only need to study the convexity of Ln w.r.t. σn[2] [.] When 2 ≤ _n ≤_ _N_, _Ln =_ _[d]_ _λ2n_ 1 + log _[σ]n[2]_ + [1] Eq _||µ˜(xn, x0) −_ **_µn(xn)||[2]_** _σn[2]_ _−_ _λ[2]n_ _σn[2]_ _d_ Let A = λ[2]n [+][ E][q] _|| ˜µ(xn,x0)d−µn(xn)||[2]_, then Ln as a function of σn[2] [is convex when][ 0][ < σ]n[2] _[<][ 2][A]_ and concave when 2A < σn[2] [. Thereby,][ L][vb][(][σ]n[2] [)][ is neither convex nor concave w.r.t.][ σ]n[2] [.] Nevertheless, in this paper, Lvb(ˆσn[2] [)][ is a stochastic upper bound of][ L][vb][(][σ]n[∗][2][)][ because][ L][vb][(][σ]n[∗][2][)][ is] the optimal. The bias of Lvb(ˆσn[2] [)][ w.r.t.][ L][vb][(][σ]n[∗][2][)][ is due to the Monte Carlo method as well as] the error of the score-based model. The former can be reduced by increasing the number of Monte Carlo samples. The latter is irreducible if the pretrained model is fixed, which motivates us to clip the estimate, as discussed in Section 3.1. H.3 COMPARISON TO OTHER GAUSSIAN MODELS AND THEIR RESULTS The reverse process of DPMs is a Markov process with Gaussian transitions. Thereby, it is interesting to compare it with other Gaussian models, e.g., the expectation propagation (EP) with the Gaussian process (GP) (Kim & Ghahramani, 2006). ----- Both EP and Analytic-DPM use moment matching as a key step to find analytic solutions of _DKL(ptarget_ _popt) terms. However, to our knowledge, the relation between moment matching_ _||_ and DPMs has not been revealed in prior literature. Further, compared to EP, we emphasize that it is highly nontrivial to calculate the second moment of ptarget in DPMs because ptarget involves an unknown and potentially complicated data distribution. In EP with GP (Kim & Ghahramani, 2006), ptarget is the product of a single likelihood factor and all other approximate factors for tractability. In fact, the form of the likelihood factor is chosen such that the first two moments of ptarget can be easily computed or approximated. For instance, the original EP (Minka, 2001) considers Gaussian mixture likelihood (or Bernoulli likelihood for classification) and the moments can be directed obtained by the properties of Gaussian (or integration by parts). Besides, at the cost of the tractability, there is no converge guarantee of EP in general. In contrast, ptarget in this paper is the conditional distribution q(xn 1 **_xn) of the corresponding_** _−_ _|_ joint distribution q(x0:N ) defined by the forward process. Note that the moments of q(xn−1|xn) are nontrivial to calculate because it involves an unknown and potentially complicated data distribution. Technically, in Lemma 13, we carefully use the law of total variance conditioned on x0 and convert the second moment of q(xn−1|xn) to that of q(x0|xn), which surprisingly can be expressed as the score function as proven in Lemma 11. H.4 FUTURE WORKS In our work, we mainly focus on image data. It would be interesting to apply Analytic-DPM to other data modalities, e.g. speech data (Chen et al., 2020). As presented in Appendix E, our method can be applied to continuous DPMs, e.g., variational diffusion models (Kingma et al., 2021) that learn the forward noise schedule. It is appealing to see how Analytic-DPM works on these continuous DPMs. Finally, it is also interesting to incorporate the optimal reverse variance in the training process of DPMs. ----- |