File size: 65,924 Bytes
f71c233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
# CALIBRATION REGULARIZED TRAINING OF DEEP NEURAL NETWORKS USING DIRICHLET KERNEL DENSITY ESTIMATION

**Anonymous authors**
Paper under double-blind review

ABSTRACT

Calibrated probabilistic classifiers are models whose predicted probabilities can
directly be interpreted as uncertainty estimates. This property is particularly important in safety-critical applications such as medical diagnosis or autonomous
driving. However, it has been shown recently that deep neural networks are poorly
calibrated and tend to output overconfident predictions. As a remedy, we propose
a trainable calibration error estimator based on Dirichlet kernel density estimates,
which asymptotically converges to the true Lp calibration error. This novel estimator enables us to achieve the strongest notion of multiclass calibration, called
canonical calibration, while other common calibration methods only allow for toplabel and marginal calibration. The empirical results show that our estimator is
competitive with the state-of-the-art, consistently yielding tradeoffs between calibration error and accuracy that are (near) Pareto optimal across a range of network
architectures. The computational complexity of our estimator is O(n[2]), matching
that of the kernel maximum mean discrepancy, used in a previously considered
trainable calibration estimator (Kumar et al., 2018). By contrast, the proposed
method has a natural choice of kernel, and can be used to generate consistent estimates of other quantities based on conditional expectation, such as the sharpness
of an estimator.

1 INTRODUCTION

Deep neural networks have shown tremendous success in classification tasks, being regularly the
best performing models in terms of accuracy. However, they are also known to make overconfident
predictions (Guo et al., 2017), which is particularly problematic in safety-critical applications such
as medical diagnosis or autonomous driving. Therefore, in many real world applications we do
not just care about the predictive performance, but also about the trustworthiness of that prediction,
that is, we are interested in accurate predictions with robust uncertainty estimates. To this end, we
want our models to be uncertainty calibrated which means that, for instance, among all cells that
have been predicted with a probability of 0.8 to be cancerous, in fact a fraction of 80 % belong to a
malignant tumor.

Being calibrated, however, does not imply that the classifier achieves good accuracy. For instance,
a classifier that always predicts the marginal distribution of the target class is calibrated, but will
not be very useful in practice. Likewise, a good predictive performance does not ensure calibration.
In particular, for a broad class of loss functions, risk minimization leads to asymptotically Bayes
optimal classifiers (Bartlett et al., 2006). However, there is no guarantee that they are calibrated,
even in the aysmptotic limit. Therefore, we consider minimizing the risk plus a term that penalizes
miscalibration, i.e., Risk +λ · CalibrationError. For parameter values λ > 0, this will push the
classifier towards a calibrated model, while maintaining similar accuracy. The existence of such a
_λ > 0 is suggested by the fact that there always exists at least one Bayes optimal classifier that is_
calibrated, namely P(y|x).

To optimize the risk and the calibration error jointly, we propose a differentiable and consistent estimator of the expected Lp calibration error based on kernel density estimates (KDEs). In particular,
we use a Beta kernel in binary classification tasks and a Dirichlet kernel in the multiclass setting,


-----

as these kernels are the natural choices to model density estimation over a probability simplex. Our
Dirichlet kernel based estimator allows for the estimation of canonical calibration, which is the
strongest notion of multiclass calibration as it implies the calibration of the whole probability vector
(Br¨ocker, 2009; Appice et al., 2015; Vaicenavicius et al., 2019). By contrast, most other state-ofthe-art methods only achieve weaker versions of multiclass calibration, namely top-label (Guo et al.,
2017) and marginal or class-wise calibration (Kull et al., 2019). The top-label calibration only considers the scores for the predictied class, while for marginal calibration the multiclass problem is
split up into K one-vs-all binary ones, each of which is required to be calibrated according to the
definition of binary calibration. In many applications marginal and canonical calibration are preferable to top-label calibration, since we often care about having reliable uncertainty estimates for more
than just one class per prediction. For instance, in medical diagnosis we do not just care about the
most likely disease a certain patient might have but also about the probabilities of other diseases.

Our contributions can be summarized as follows:

1. We develop a trainable calibration error objective using Dirichlet kernel density estimates,
which can be minimized alongside any loss function in the existing batch stochastic gradient descent framework.

2. We propose to use our estimator to evaluate canonical calibration. Due to the scaling
properties of Dirichlet kernel density estimation, and the tendency for probabilities to be
concentrated in a relatively small number of classes, this becomes feasible in cases that
cannot be estimated using a binned estimator.

3. We show on a variety of network architectures and two datasets that DNNs trained alongside an estimator of the calibration error achieve competitive results both on existing metrics and on the proposed measure of canonical calibration.


2 RELATED WORK

Calibration of probabilistic predictors has long been studied in many fields. This topic gained attention in the deep learning community following the observation in Guo et al. (2017) that modern
neural networks are poorly calibrated and tend to give overconfident predictions due to overfitting
on the NLL loss. The surge of interest resulted in many calibration strategies that can be split in two
general categories, which we discuss subsequently. Post-hoc calibration strategies learn a calibration map of the predictions from a trained predictor in a post-hoc manner. For instance, Platt scaling
(Platt, 1999) fits a logistic regression model on top of the logit outputs of the model. A special
case of Platt scaling that fits a single scalar, called temperature, has been popularized by Guo et al.
(2017) as an accuracy-preserving, easy to implement and effective method to improve calibration.
However, it has the undesired consequence that it clamps the high confidence scores of accurate predictions (Kumar et al., 2018). Other approaches for post-hoc calibration include: histogram binning
(Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002), and Bayesian binning
into quantiles (Naeini & Cooper, 2015). Trainable calibration strategies integrate a differentiable
calibration measure into the training objective. One of the earliest approaches is regularization by
penalizing low entropy predictions (Pereyra et al., 2017). Similarly to temperature scaling, it has
been shown that entropy regularization needlessly suppresses high confidence scores of correct predictions (Kumar et al., 2018). Another popular strategy is MMCE (Maxmimum Mean Calibration
Error) (Kumar et al., 2018), where the entropy regularizer is replaced by a kernel-based surrogate for
the calibration error that can be optimized alongside NLL. It has been shown that label smoothing
(Szegedy et al., 2015; M¨uller et al., 2020), i.e. training models with a weighted mixture of the labels
instead of one-hot vectors, also improves model calibration. Liang et al. (2020) propose to add the
difference between predicted confidence and accuracy as auxiliary term to the cross-entropy loss.
Focal loss (Mukhoti et al., 2020; Lin et al., 2018) has recently been empirically shown to produce
better calibrated models than many of the alternatives, but does not estimate a clear quantity related
to calibration error.

**Kernel density estimation (Parzen, 1962; Rosenblatt, 1956) is a non-parametric method to estimate**
a probability density function from a finite sample. Zhang et al. (2020) propose a KDE-based estimator of the calibration error for measuring calibration performance. However, they use the triweight
kernel, which has a limited support interval and is therefore applicable to binary classification, but
does not have a natural extension to higher dimensional simplexes, in contrast to the Dirichlet kernel


-----

that we consider here. As a result, they consider an unnatural proxy to marginal calibration error,
which does not result in a consistent estimator.

3 METHODS

The most commonly used loss functions are designed to achieve consistency in the sense of Bayes
optimality under risk minimization, however, they do not guarantee calibration - neither for finite
samples nor in the asymptotic limit. Since we are interested in models f that are both accurate and
calibrated, we consider the following optimization problem bounding the calibration error CE(f ):
_f = arg min_ (1)
_f_ [Risk(][f] [)][,][ s.t.][ CE(][f] [)][ ≤] _[B]_
_∈F_

for some B > 0, and its associated Lagrangian

_f = arg min_ Risk(f ) + λ CE(f ) _._ (2)
_f_ _·_
_∈F_

 

We measure the (mis-)calibration in terms of the Lp calibration error. To this end, let (Ω, A, P)
be a probability space, let X = R[d], Y = {0, 1, ..., K}. Let x : Ω _→X and y : Ω_ _→Y be_
random variables while realizations are denoted with subscripts. Furthermore, let f : X →△[K]
be a decision function, where △[K] denotes the K dimensional simplex as is achieved e.g. from the
output of a final softmax layer in a neural network.
**Definition 3.1 (Calibration error, (Naeini et al., 2015; Kumar et al., 2019; Wenger et al., 2020)).**
_The Lp calibration error of f is:_

[1]

_p_ _p_
CEp(f ) = E E[y _f_ (x)] _f_ (x) _._ (3)
_|_ _−_ _p_
  

We note that we consider multiclass calibration, and that f (x) and the conditional expectation in
Equation 3 therefore map to points on a probability simplex. We say that a classifier f is perfectly
calibrated if CEp(f ) = 0. Kumar et al. (2018) have also considered a minimization problem similar
to Equation 2. Instead of using the CEp they use a metric called maximum mean calibration error
(MMCE) that is 0 if and only if CEp = 0. However, it is unclear how MMCE relates to the canonical
multiclass setting or to the norm parameter p for non-zero CEp.

In order to optimize Definition 3.1 directly, we need to perform density estimation over the probability simplex in order to empirically compute the conditional expectation. In a binary setting,
this has traditionally been done with binned estimates (Naeini et al., 2015; Guo et al., 2017; Kumar
et al., 2019). However, this is not differentiable w.r.t. the function f, and cannot be incorporated
into a gradient based training procedure. Furthermore, binned estimates suffer from the curse of
dimensionality and do not have a practical extension to multiclass settings. A natural choice for a
differentiable kernel density estimator in the binary case is a kernel based on the Beta distribution
and the extension to the multiclass case is given by the Dirichlet distribution. Hence, we consider
an estimator for the CEp based on Beta and Dirichlet kernel density estimates in the binary and
multiclass setting, respectively. We require that this estimator is consistent and differentiable such
that we can train it according to Equation 2. This estimator is given by:


CE\p(f )[p] = [1]


E[y\ f (x)]
_|_ _f_ (xh) _[−]_ _[f]_ [(][x][h][)]


(4)


_h=1_


where E[y\ f (x)] E[y\ f (x)] evaluated at f (x) = f (xh). If Px,y has a probability
_|_ _f_ (xh) [denotes] _|_

density px,y with respect to the product of the Lebesgue and counting measure, we can define:
_px,y(xi, yi) = py|x=xi_ (yi) px(xi). Then we define the estimator of the conditional expectation as
follows:

_yk_ _[y][k][ p][x,y][(][f]_ [(][x][)][, y][k][)]

E[y _f_ (x)] = _yk py_ _x=f_ (x)(yk) = _∈Y_ (5)
_|_ _|_ _px(f_ (x))

_yXk∈Yn_ P

_≈_ Pi=1ni=1[k][k][(][f][(][f][(][x][(][x][);][);][ f][ f][(][x][(][x][i][))][i][))][y][i] =: E[y\ | f (x)] (6)

where k is the kernel of a kernel density estimate evaluated at point xi.

P


-----

**Proposition 3.2.** E[y\ | f (x)] is a pointwise consistent estimator of E[y | f (x)], that is:

_n_

lim _i=1n_ _[k][(][f]_ [(][x][);][ f] [(][x][i][))][y][i] = _yk∈Y_ _[y][k][ p][x,y][(][f]_ [(][x][)][, y][k][)] _._ (7)
_n→∞_ P _i=1_ _[k][(][f]_ [(][x][);][ f] [(][x][i][))] P _px(f_ (x))

P

_Proof. By the consistency of kernel density estimators (Silverman, 1986; Chen, 1999; Ouimet_
& Tolosana-Delgado, 2021), for all f (x) (0, 1), _n1_ _ni=1_ _[k][(][f]_ [(][x][);][ f] [(][x][i][))][y][i] _n→∞_

_yk∈Y_ _[y][k][ p][x,y][(][f]_ [(][x][)][, y][k][)][ and][ 1]n _ni=1_ _[k][(][f]_ [(][x][);][ f] [(][x]∈[i][))] _−n−→∞−−→_ _px(Pf_ (x)). The fact that the ratio of−−−−→

two convergent sequences converges against the ratio of their limits shows the result.

P P

**Mean squared error in binary classification** As a first instantiation of our framework we consider a binary classification setting, with the mean squared error MSE(f ) = E[(f (x) − _y)[2]] as the_
risk function, jointly optimized with the L2 calibration error CE2. Following Murphy (1973); Degroot & Fienberg (1983); Kuleshov & Liang (2015); Nguyen & O’Connor (2015) we decompose
(full derivation in Appendix A) the MSE as:

MSE(f ) − CE2(f )[2] = E 1 − E[y | f (x)] E[y | f (x)] _≥_ 0. (8)
  

Similar to Equation 2, we consider the optimization problem for some λ > 0:

_f = arg min_ MSE(f ) + λ CE2(f )[2][]. (9)
_f_ _∈F_



Using Equation 8 we rewrite:

MSE(f ) + λ CE2(f )[2] =(1 + λ) MSE(f ) _λ_ MSE(f ) CE2(f )[2][] (10)
_−_ _−_


=(1 + λ) MSE(f ) − _λE_ 1 − E[y | f (x)] E[y | f (x)] _._ (11)
  

Rescaling Equation 11 by a factor of (1 + λ)[−][1] and a variable substitution γ = 1+λλ

_[∈]_ [[0][,][ 1)]

_f = arg min_ MSE(f ) + λ CE2(f )[2][] = arg min MSE(f ) _γE_ 1 E[y _f_ (x)] E[y _f_ (x)]
_f_ _f_ _−_ _−_ _|_ _|_
_∈F_ _∈F_   (12)

= arg min MSE(f ) + γE E[y _f_ (x)][2][i]. (13)
_f_ _|_
_∈F_ h

For optimization we wish to find an estimator for E[E[y | f (x)][2]]. Building upon Equation 6, a
partially debiased estimator can be written as:[1]

2

_n_

\ _i≠_ _h_ _[k][(][f]_ [(][x][h][);][ f] [(][x][i][))][y][i] _−_ [P]i≠ _h_ [(][k][(][f] [(][x][h][);][ f] [(][x][i][))][y][i][)][2]
E E[y | f (x)][2] _≈_ _n[1]_ _h=1_ P 2 _._ (14)
h i X _i≠_ _h_ _[k][(][f]_ [(][x][h][);][ f] [(][x][i][))] _−_ [P]i≠ _h_ [(][k][(][f] [(][x][h][);][ f] [(][x][i][)))][2]

In a binary setting, the kernels k(P·, ·) are Beta distributions, i.e. denoting _zi := f_ (xi) for short, then:

_kBeta(z, zi) := z[α][i][−][1](1_ _z)[β][i][−][1][ Γ(][α][i][ +][ β][i][)]_ (15)
_−_ Γ(αi) Γ(βi) _[,]_


with αi = _[z]h[i]_ [+1][ and][ β][i][ =][ 1][−]h[z][i] [+1][ (Chen, 1999; Bouezmarni & Rolin, 2003; Zhang & Karunamuni,]

2010), where h is a bandwidth parameter in the kernel density estimate that goes to 0 as n →∞.
We note that the computational complexity of this estimator is O(n[2]). Within the gradient descent
training procedure, the density is estimated using a mini-batch and therefore the O(n[2]) complexity
is w.r.t. a mini-batch, not the entire dataset.

The estimator in Equation 14 is a ratio of two second order U-statistics that converge as n[−][1][/][2]

(Ferguson, 2005). Therefore, the overall convergence will be n[−][1][/][2]. Empirical covergence rates are
calculated in Appendix D.3 and shown to be close to the theoretically expected value.

1We have debiased the numerator and denominator individually (Ferguson, 2005, Section 2), but for simplicity have not corrected for the fact that we are estimating a ratio (Scott & Wu, 1981).


-----

**Multiclass calibration with Dirichlet kernel density estimates** There are multiple definitions
regarding multiclass calibration that differ in the strictness regarding the calibration of the probability vector f (x). The weakest notion is top label calibration, which, as the name suggests, only
cares about calibrating the entry with the highest predicted probability, which reduces to a binary
calibration problem again (Guo et al., 2017). Marginal or class-wise calibration (Kull et al., 2019)
is the most commonly used definition of multiclass calibration and a stronger version of top label
calibration. Here, the problem is split into K one-vs-all binary calibration setting, such that each
class has to be calibrated against the other K − 1 classes:

_K_

_p[]_

MCEp(f )[p] = E E[y = k | f (x)k] − _f_ (x)k _._ (16)

_k=1_

X 

An estimator for this calibration error is:


_i≠_ _j_ _[k][Beta][(][f]_ [(][x][j][)][k][;][ f] [(][x][i][)][k][)[][y][i][]][k] _f_ (xj)k

_i=j_ _[k][Beta][(][f]_ [(][x][j][)][k][;][ f] [(][x][i][)][k][)] _−_
_̸_

P


MCE\p(f )[p] =


(17)


_j=1_


_k=1_


The strongest notion of multiclass calibration, and the one that we want to consider in this paper, is
called canonical calibration (Br¨ocker, 2009; Appice et al., 2015; Vaicenavicius et al., 2019). Here
it is required that the whole probability vector f (x) is calibrated. The definition is exactly the one
from Definition 3.1. Its estimator is:


_i≠_ _j_ _[k][Dir][(][f]_ [(][x][j][);][ f] [(][x][i][))][y][i]

_i=j_ _[k][Dir][(][f]_ [(][x][j][);][ f] [(][x][i][))][ −] _[f]_ [(][x][j][)]
_̸_


_n_

CE\p(f )[p] = [1]

_n_

_j=1_ P

X

where kDir is a Dirichlet kernel defined as:


(18)


_K_

_i=1_ _[α][i][)]_
_kDir(z, zi) := [Γ(]K[P][K]_ _zj[α][ij]_ _[−][1]_ (19)

_i=1_ [Γ(][α][i][)] _j=1_

Y

with αi = zi/h + 1 (Ouimet & Tolosana-Delgado, 2021). As before, the computational complexityQ
is O(n[2]) irrespective of p.

This estimator is differentiable and furthermore, the following proposition holds:
**Proposition 3.3. The Dirichlet kernel based CE estimator is consistent, that is**

lim 1 _n_ _ni≠_ _nj_ _[k][Dir][(][f]_ [(][x][j][);][ f] [(][x][i][))][y][i] _p_ = E E[y _f_ (x)] _f_ (x) _p_ _p._ (20)
_n→∞_ _n_ Xj=1 P _i≠_ _j_ _[k][Dir][(][f]_ [(][x][j][);][ f] [(][x][i][))][ −] _[f]_ [(][x][j][)] _p_  _|_ _−_ _p_

P

_Proof. Dirichlet kernel estimators are consistent (Ouimet & Tolosana-Delgado, 2021), conse-_
quently, by Proposition 3.2 the term inside the norm is consistent for any fixed f (xj) (note, that
summing over i ̸= j ensures that the ratio of the KDE’s does not depend on the outer summation).
Moreover, for any convergent sequence also the norm of that sequence converges against the norm
of its limit. Ultimately, the outer sum is merely the sample mean of consistent summands, which
again is consistent.

4 EMPIRICAL SETUP

We trained ResNet (He et al., 2015), ResNet with stochastic depth (SD) (Huang et al., 2016),
DenseNet (Huang et al., 2018) and WideResNet (Zagoruyko & Komodakis, 2016) networks on
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). We use 45000 images for training. The code will
be released upon acceptance.

**Baselines** _Cross-entropy: The first baseline model is trained using cross-entropy with the data_
preprocessing, training procedure and hyperparameters described in the corresponding paper for
the architecture. Trainable calibration strategies MMCE (Kumar et al., 2018) is a differentiable
measure of calibration with a property that it is minimized at perfect calibration. It is used as
a regulariser alongside NLL, with the strength of regularization parameterized by λ. Focal loss
(Mukhoti et al., 2020) is an alternative to the popular cross-entropy loss, defined as Lf = −(1 −


-----

_f_ (y|x))[γ] log(f (y|x)), where γ is a hyperparameter and f (y|x) is the probability score that a neural
network f outputs for a class y on an input x. Their best-performing approach is the sampledependent FL-53 where γ = 5 for f (y|x) ∈ [0, 0.2) and γ = 3 otherwise, followed by the method
with fixed γ = 3. Post-hoc calibration strategies Guo et al. (2017) investigated the performance
of several post-hoc calibration methods and found temperature scaling to be a strong baseline,
which we use as a representative of this group. It works by scaling the logits with a scalar T > 0,
typically learned on a validation set by minimizing NLL. Following Kumar et al. (2018); Mukhoti
et al. (2020), we also use temperature scaling as a post-processing step for our method.

**Metrics** The most widely-used metric for expected calibration error (ECE) is a binned estimator
(Naeini et al., 2015), which divides the interval [0, 1] into bins of equal width and then calculates
a weighted average of the absolute difference between accuracy and confidence for each bin. A
better binning scheme involves determining the bin sizes so that an equal number of samples fall
into each bin (Nguyen & O’Connor, 2015; Mukhoti et al., 2020). We report the ECE (%) with 15
bins calculated according to the latter, so-called adaptive binning procedure. We compute the 95%
confidence intervals using 100 bootstrap samples as in Kumar et al. (2019). We consider multiple
versions of the ECE metric based on the Lp norm and the type of calibration (top-label, marginal,
canonical). Top-label calibration error only considers the probability of the predicted class, marginal
requires per-class calibration and the canonical is the highest form of calibration which requires the
entire probability vector to be calibrated. We report L1 and L2 ECE in the marginal and canonical
case. Additional experiments with top-label and marginal calibration on both CIFAR-10 and CIFAR100 can be found in Appendix B.

**Hyperparameters** A crucial parameter for KDE is the bandwidth, a positive number that defines
the smoothness of the density plot. Poorly chosen bandwidth may lead to undersmoothing (small
bandwidth) or oversmoothing (large bandwidth). A commonly used non-parametric bandwidth selector is maximum likelihood cross validation (Duin, 1976). For our experiments we choose the
bandwidth from a list of possible values by maximizing the leave-one-out likelihood. The λ parameter for weighting the calibration error w.r.t the loss is typically chosen via cross-validation or using
a holdout validation set. The p parameter is chosen depending on the desired Lp calibration error
and the corresponding theoretical guarantees.

5 RESULTS AND DISCUSSION


5.1 BINARY CLASSIFICATION

We construct a binary experiment by splitting the CIFAR-10 classes into 2 classes: vehicles (plane,
automobile, ship, truck) and animals (bird, cat, deer, dog, frog, horse). Figure 1a shows how the
choice of the bandwidth parameter influences the shape of the estimate.


0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000


10

8

6

4

2

0

|Col1|Col2|KDE b = KDE b =|0.001 0.01|
|---|---|---|---|
|||KDE b = Histogram|0.1 from samples|
|||||
|||||
|||||
|||||
|||||


KDE b = 0.001
KDE b = 0.01
KDE b = 0.1
Histogram from samples

0.0 0.2 0.4 0.6 0.8 1.0

|Col1|Col2|Col3|Col4|Col5|Col6|Col7|Col8|KDE-MSE MSE|Col10|
|---|---|---|---|---|---|---|---|---|---|
|||||||||||
|||||||||||
|||||||||||
||||||0.|2||||
|||||||||||
|||||0.1||||0.3||
|||||||||||
||||||||||0.4|
|||||||||||
|||||||||||


0.03 0.04 0.05 0.06 0.07 0.08

MSE

(b) Effect of γ


(a) Effect of the bandwidth b


Figure 1: Calibration regularized training using MSE loss and CE2

Figure 1b shows the effect of the regularization parameter γ on the performance of a ResNet-110
model. The orange point represents a model trained with MSE loss, and the blue points (KDE-MSE)
correspond to models trained with regularized MSE loss by an L2 calibration error for different
values of γ. As expected, the calibration regularized training decreases the L2 calibration error at
the cost of slightly increased error.


-----

5.2 EVALUATING CANONICAL CALIBRATION

Accurately evaluating the calibration error is another crucial step towards designing trustworthy
models that can be used in high-cost settings. In spite of its numerous flaws discussed in Vaicenavicius et al. (2019); Ding et al. (2020); Ashukha et al. (2021), such as its sensitivity to the binning
scheme, the histogram-based estimator remains the most widely used metric for evaluating miscalibration. Another downside of the binned estimator is its inability to capture canonical calibration
due to the curse of dimensionality, as the number of bins grows exponentially with the number of
classes. Therefore, because of its favourable scaling properties, we propose using our Dirichlet
kernel density estimate as an alternative metric (KDE-ECE) to measure calibration.
To investigate its relationship with the commonly used binned estimator, we first introduce an extension of the top-label binned estimator to the probability simplex in the three class setting. We start
by partitioning the probability simplex into equally-sized, triangle-shaped bins and assign the probability scores to the corresponding bin, as shown in Figure 2a. Then, we define the binned estimate
of canonical calibration error as follows:


CEp(f )[p] _≈_ E _∥H(f_ (x)) − _f_ (x)∥p[p] _≈_ _n[1]_
h i


_H(f_ (xj)) _f_ (xi) _p_ (21)
_∥_ _−_ _∥[p]_
_i=1_

X


where H(f (xj)) is the histogram estimate, shown in Figure 2b. The surface of the corresponding
Dirichlet KDE is presented in Figure 2c. In Figure 3 we show that the KDE-ECE estimates of the
three types of calibration closely correspond to the their histogram-based approximations. Each
point in the plot represents a ResNet-56 model trained on a different subset of three classes from
CIFAR-10. See Appendix C for another example of the binned estimator and Dirichlet KDE on
CIFAR-10 and an experiment with varying number of points used for the density estimation.

0.0 0.2 0.4 0.6 0.8 1.0 0.05 0.10 0.15 0.20 0.25


0.0

1.0

0.2

0.8

0.4

0.6

0.6

0.4

0.8

0.2

1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0


0.05 0.10 0.15 0.20 0.25


(a) Splitting the simplex in 16 bins


(b) Histogram (c) Dirichlet KDE


Figure 2: Extension of the binned estimator to the probability simplex, compared with the KDEECE. The KDE-ECE achieves a better approximation to the finite sample, and accurately models
the fact that samples tend to be concentrated near low dimensional faces of the simplex.


0.200

0.175

0.150

0.125

0.100

Binned ECE 0.075

0.050

0.025

0.000

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

KDE ECE


0.04

0.03

0.02

Binned ECE

0.01

0.00

0.00 0.01 0.02 0.03 0.04

KDE ECE


0.06

0.05

0.04

0.03

Binned ECE

0.02

0.01

0.00

0.00 0.01 0.02 0.03 0.04 0.05 0.06

KDE ECE


(a) Canonical


(b) Marginal


(c) Top-label


Figure 3: Relationship between the KDE-ECE estimates and their corresponding binned approximations on the three types of calibration. Each point represents a ResNet-56 model trained on a subset
of three classes from CIFAR-10. The 3000 probability scores of the test set are assigned in 25 bins
with adaptive width for the binned estimate. A bandwidth of 0.001 is used for KDE-ECE.


-----

5.3 MULTICLASS CLASSIFICATION

In this section we evaluate our proposed KDE-based ECE estimator that was jointly trained with
cross entropy loss (KDE-CRE) against other baselines in a multiclass setting on CIFAR-10 and
CIFAR-100. We found that for KDE-CRE, values of λ ∈ [0.01, 0.1] provide a good trade-off in
terms of accuracy and calibration error. Table 1 summarizes the accuracy and marginal L1 ECE%
(computed using 15 bins), measured across multiple architectures. For MMCE, we report the results
with λ = 1 and for KDE-CRE we use λ = 0.01. An analogous table measuring marginal L2 ECE
is given in Appendix B.

Table 1: Accuracy and marginal L1 ECE (%) computed with 15 bins for different loss functions
and architectures, both trained from scratch (Pre T) and after temperature scaling on a validation set
(Post T). Best results are marked in bold.

**CIFAR-10** **CIFAR-100**
**Loss** **Metric** ResNet ResNet (SD) Wide-ResNet DenseNet ResNet ResNet (SD) Wide-ResNet DenseNet

Pre T 0.419 0.357 **0.241** 0.236 0.129 0.100 **0.086** **0.090**
ECE
Post T 0.282 0.250 0.278 **0.165** 0.114 **0.089** **0.105** **0.078**
CRE

Pre T 0.925 **0.926** **0.957** 0.947 **0.700** **0.728** **0.803** 0.756
Acc
Post T **0.927** 0.925 **0.957** 0.947 **0.700** **0.729** **0.801** 0.758


Pre T **0.250** 0.390 0.265 **0.193** 0.143 0.100 0.120 0.123
ECE
Post T 0.361 0.308 0.291 0.235 0.121 0.093 0.109 0.124
MMCE

Pre T **0.929** 0.925 0.947 0.944 0.693 0.723 0.767 0.748
Acc
Post T 0.926 **0.926** 0.949 0.945 0.691 0.722 0.770 0.743

Pre T 0.403 0.416 0.414 0.259 0.145 0.120 0.125 0.095
ECE
Post T 0.272 0.267 0.437 0.220 0.124 0.107 0.106 0.081
FL-53

Pre T 0.922 0.920 0.936 **0.948** 0.695 0.711 0.760 0.752
Acc
Post T 0.923 0.919 0.936 **0.949** 0.693 0.712 0.763 0.753

Pre T 0.363 **0.338** 0.289 0.296 **0.128** **0.096** 0.092 0.099
ECE
Post T **0.182** **0.220** **0.226** 0.248 **0.104** 0.095 0.108 0.085
_L1 KDE-CRE_

Pre T 0.926 0.925 0.953 0.943 0.697 0.725 0.796 **0.757**
Acc
Post T **0.927** 0.925 0.953 0.944 0.698 0.720 0.793 **0.759**

We notice that for both pre and post temperature scaling, KDE-CRE achieves very competitive ECE
scores. Another encouraging observation is that the improvement of calibration error comes at almost no cost in accuracy. An important advantage of our KDE-based method is the ability to directly
train and evaluate canonical calibration. In Figure 4 we show a scatter plot with confidence intervals
of the L1 and L2 KDE-CRE models for canonical calibration and the other baselines on CIFAR-10.
We measure the canonical calibration using our KDE-ECE metric from section 5.2. In three of the
architectures, both L1 and L2 KDE-CRE either dominate or are statistically tied with cross-entropy
(CRE). Similarly, Figure 5 shows a scatter plot of L1 and L2 KDE-CRE models trained to minimize
marginal calibration error. In this case, we measure L2 marginal ECE with the standard binned estimator. In most cases, our methods Pareto dominate the other baselines. A general observation can be
made, however, that the models trained with cross-entropy have a surprisingly low marginal calibration error, contrary to previous findings that show poor calibration when considering only the most
confident prediction (top-label calibration). An additional experiment comparing the CRE baseline
with KDE-CRE for canonical calibration on a benchmark dataset of histological images of human
colorectal cancer is given in Appendix D.2, which clearly illustrates the superior performance of our
method, both in terms of accuracy and calibration error in this context.
To summarize, the experiments show that our estimator is consistently producing competitive calibration errors with other state-of-the-art approaches, while maintaining accuracy and keeping the
computational complexity at O(n[2]). We evaluate the computational overhead of CRE and KDECRE and summarize the results in a table in Appendix D.1, which shows that the added cost is
less than a couple percent. There are several limitations in the current work: A larger scale benchmarking will be beneficial for exploring the limits of canonical calibration using Dirichlet kernels.
Furthermore, while we showed consistency of our estimator, we did not fully derive and implement
its debiasing. Due to space constraints, this was not the focus of the paper and is left for future work.

6 CONCLUSION

In this paper, we proposed a consistent and differentiable estimator of an Lp calibration error using
Dirichlet kernels. The KDE-based estimate can be directly optimized alongside any loss function in
the existing batch stochastic gradient descent framework. Furthermore, we propose using it as a mea

-----

sure of the highest form of calibration which requires the entire probability vector to be calibrated.
We showed empirically on a range of neural architectures that the performance of our estimator
in terms of accuracy and calibration error is competitive against the current state-of-the-art, while
having superior properties as a consistent estimator of canonical calibration error.


0.11

0.10


0.16

0.14

0.12

0.10

0.08

0.16

0.14

0.12

0.10

0.08

0.06

0.04


0.09

0.08


0.07

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.04

|Col1|0.3|Col3|Col4|Col5|Col6|CRE FL|
|---|---|---|---|---|---|---|
||||6||||
|||||3||MMCE L1 KDE-CRE L2 KDE-CRE|
|||1||4 0 2|||
||||||0.1|1.0|
||||||||
|||||||3 0.10.01|
|||||||0.01|

|0.|3|Col3|Col4|Col5|CRE FL|
|---|---|---|---|---|---|
||||||MMCE L1 KDE-CRE L2 KDE-CRE|
||||0.2|||
|||||3|10 6|
|||||0.1|4 53 12.0|
||||||0.01 0.1|


0.3 CRE
FL
MMCE
L1 KDE-CRE

L2 KDE-CRE

0.2

10

3 6

0.1

4

53 1.02

0.01

0.1


CRE

0.3 6 FL

MMCE
L1 KDE-CRE

3 L2 KDE-CRE

4

10

2

0.1 1.0

0.2

53 0.10.01

0.01


0.88 0.89 0.90 0.91 0.92 0.93

ACC

(a) ResNet-110


0.84 0.86 0.88 0.90 0.92

ACC

(b) ResNet-110 (SD)

|Col1|Col2|6|Col4|Col5|Col6|CRE FL|Col8|
|---|---|---|---|---|---|---|---|
|0|.3|4||10||MMCE L1 KDE-|CRE|
|||||||L2 KDE-|CRE|
||||0.2|2 0.1 53||||
|||||0.|2 31.0|||
|||||||||
|||||||0.001.1||
|||||||0|.01|

|Col1|6|Col3|Col4|Col5|CRE|
|---|---|---|---|---|---|
||||||FL MMCE|
|||10 4|||L1 KDE-CRE L2 KDE-CRE|
|||||||
||||0.3|||
|||||0.20.1 0.2|2 0.1301 .. 00 1|
||||||0.01|
||||||53|


0.91 0.92 0.93 0.94 0.95 0.96

ACC

(c) Wide-ResNet-28-10


0.86 0.88 0.90 0.92 0.94

ACC

(d) DenseNet-40


Figure 4: Canonical calibration on CIFAR-10


|1e 5|Col2|Col3|Col4|Col5|Col6|Col7|Col8|Col9|
|---|---|---|---|---|---|---|---|---|
|||2|4|2||53||CRE FL MMCE L1 KDE-CRE L2 KDE-CRE|
||||0.|||0.2|||
||||6|3||1 0.3|.0 0.01|0.1|
|||||0.3|||0.1|0.01|
||||||||||
||||||||||
||||||||||


4 CRE

53 FL

0.2 MMCE

2 6 0.2 LL12 KDE-CRE KDE-CRE

1.0

3 0.3 0.01 0.1

0.3 0.01

0.1

0.65 0.66 0.67 0.68 0.69 0.70 0.71

ACC


2.5


3.5

3.0

2.5

2.0

1.5

1.0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5


2.0

1.5


1.0

0.5

|1e 5|Col2|Col3|Col4|Col5|Col6|Col7|Col8|Col9|Col10|
|---|---|---|---|---|---|---|---|---|---|
|0.||3||||3 0.2||0.01||
|||||||||53||
|||||0.3||||0.1|2 1.0|
||||||0|.2||0.1|0.01|
|CRE FL MM L K||CE DE-CRE||||||||
|1 L2 K||DE-CRE||||||||


0.64 0.66 0.68 0.70 0.72 0.74

ACC

(b) ResNet-110 (SD)


(a) ResNet-110


|1e 5|Col2|Col3|Col4|Col5|Col6|Col7|Col8|Col9|
|---|---|---|---|---|---|---|---|---|
||||||||CRE||
|||4|||||FL MMCE||
||||||||||
||||||||L1 KDE-C L2 KDE-C|RE RE|
||||53 1. 2||0||||
||||||0.1||||
||0|.3|0||0.2 .2||03.01||
|||0.3|||||00.1.01||
||||||||||


4 CREFL

MMCE
L1 KDE-CRE
L2 KDE-CRE

53 1.0

2

0.1

0.3

0.2

0.2

0.3 0.10.010.013

0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81

ACC


3.0

2.5

2.0

1.5

1.0

0.5

|1e 5|Col2|Col3|Col4|Col5|Col6|Col7|Col8|Col9|Col10|Col11|
|---|---|---|---|---|---|---|---|---|---|---|
|||||||1.|||0|CRE|
|||||0.2||2||||FL MMCE L1 KDE-CRE L2 KDE-CRE|
||||||||||||
||4||||||||||
|||0.3|||03.2||||53|0.01|
||||||||0||.1||
||||||0.3||||0.10|.01|
||||||||||||
||||||||||||


0.72 0.73 0.74 0.75 0.76

ACC

(d) DenseNet-40


(c) Wide-ResNet-28-10


Figure 5: Marginal calibration on CIFAR-100


-----

REFERENCES

A. Appice, P. Rodrigues, V. S. Costa, C. Soares, Jo˜ao Gama, and A. Jorge. Novel decompositions
of proper scoring rules for classification : Score adjustment as precursor to calibration. 2015.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning, 2021.

Peter L. Bartlett, Michael I. Jordan, and Jon D. Mcauliffe. Convexity, classification, and risk bounds.
_Journal of the American Statistical Association, 101(473):138–156, 2006._

Taoufik Bouezmarni and Jean-Marie Rolin. Consistency of the beta kernel density function estimator. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 31(1):89–98,
2003.

Jochen Br¨ocker. Reliability, sufficiency, and the decomposition of proper scores. Quarterly Journal
_of the Royal Meteorological Society, 135(643):1512–1519, Jul 2009._

Song Xi Chen. Beta kernel estimators for density functions. _Computational Statistics & Data_
_Analysis, 31:131–145, 1999._

M. Degroot and S. Fienberg. The comparison and evaluation of forecasters. The Statistician, 32:
12–22, 1983.

Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. Revisiting the evaluation of uncertainty estimation and its application to explore model complexity-uncertainty trade-off. arXiv:1903.02050,
2020.

Robert Duin. On the choice of smoothing parameters for parzen estimators of probability density
functions. IEEE Transactions on Computers, C-25(11):1175–1179, 1976.

Thomas S. Ferguson. U-statistics. In Notes for Statistics 200C. UCLA, 2005.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv:1512.03385, 2015.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochastic depth. arXiv:1603.09382, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2018.

Jakob Kather, Cleo-Aron Weis, Francesco Bianconi, Susanne Melchers, Lothar Schad, Timo Gaiser,
Alexander Marx, and Frank Z¨ollner. Multi-class texture analysis in colorectal cancer histology.
_Scientific Reports, 6:27988, 06 2016. doi: 10.1038/srep27988._

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Volodymyr Kuleshov and Percy S Liang. Calibrated structured prediction. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Pro_cessing Systems, volume 28. Curran Associates, Inc., 2015._

Meelis Kull, Miquel Perello-Nieto, Markus K¨angsepp, Telmo Silva Filho, Hao Song, and Peter Flach. Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with
Dirichlet calibration. arXiv:1910.12656, 2019.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alch´e-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
_Information Processing Systems 32, pp. 3792–3803. 2019._


-----

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable calibration measures for neural networks
from kernel mean embeddings. In ICML, 2018.

Gongbo Liang, Yu Zhang, Xiaoqin Wang, and Nathan Jacobs. Improved trainable calibration method
for neural networks on medical imaging classification. In British Machine Vision Conference,
2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Doll´ar. Focal loss for dense object
detection. arXiv:1708.02002, 2018.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip H. S. Torr, and Puneet K.
Dokania. Calibrating deep neural networks using focal loss. arXiv:2002.09437, 2020.

A. Murphy. A new vector partition of the probability score. Journal of Applied Meteorology, 12:
595–600, 1973.

Rafael M¨uller, Simon Kornblith, and Geoffrey Hinton. When does label smoothing help?
arXiv:1906.02629, 2020.

Mahdi Pakdaman Naeini and Gregory F. Cooper. Binary classifier calibration using an ensemble of
near isotonic regression models. arXiv:1511.05191, 2015.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using Bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
_Artificial Intelligence, pp. 2901–2907, 2015._

Khanh Nguyen and Brendan O’Connor. Posterior calibration and exploratory analysis for natural
language processing models. arXiv:1508.05154, 2015.

Fr´ed´eric Ouimet and Raimon Tolosana-Delgado. Asymptotic properties of dirichlet kernel density
estimators. arXiv:2002.06956, 2021.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathe_matical Statistics, 33(3):1065–1076, 1962._

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv:1701.06548, 2017.

John C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In Advances in Large Margin Classifiers, pp. 61–74. MIT Press, 1999.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
_Mathematical Statistics, 27(3):832 – 837, 1956._

Alastair Scott and Chien-Fu Wu. On the asymptotic distribution of ratio and regression estimators.
_Journal of the American Statistical Association, 76(373):98–102, 1981._

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. arXiv:1512.00567, 2015.

Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, and
Thomas B. Sch¨on. Evaluating model calibration in classification. arXiv:1902.06977, 2019.

Jonathan Wenger, Hedvig Kjellstr¨om, and Rudolph Triebel. Non-parametric calibration for classification. In International Conference on Artificial Intelligence and Statistics, pp. 178–190, 2020.

B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass probability estimates. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discov_ery and data mining, 2002._

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. ICML, 1, 05 2001.


-----

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
_Conference, 2016._

Jize Zhang, Bhavya Kailkhura, and T. Yong-Jin Han. Mix-n-match: Ensemble and compositional
methods for uncertainty calibration in deep learning. In International Conference on Machine
_Learning, 2020._

Shunpu Zhang and Rohana Karunamuni. Boundary performance of the beta kernel estimators.
_Journal of Nonparametric Statistics, 22:81–104, 01 2010._

A DERIVATION OF THE MSE DECOMPOSITION

**Definition A.1 (Mean Squared Error (MSE)). The mean squared error of an estimator is**

MSE(f ) := E[(f (x) − _y)[2]]._ (22)

**Proposition A.2. MSE(f** ) ≥ CE2(f )[2]

_Proof._

MSE(f ) :=E[(f (x) − _y))[2]] = E[((f_ (x) − E[y | f (x)]) + (E[y | f (x)] − _y))[2]]_ (23)

= E[(f (x) − E[y | f (x)])[2]] +E[(E[y | f (x)] − _y)[2]]_ (24)
=CE2[2]
|+ 2E[(f (x){z E[y _f_ (x})])(E[y _f_ (x)] _y)]_

_−_ _|_ _|_ _−_

which implies

MSE(f ) − CE2(f )[2] =E[(E[y | f (x)] − _y)[2]]_ (25)
+ 2E[(f (x) − E[y | f (x)])(E[y | f (x)] − _y)]_

=E[(E[y | f (x)] − _y)[2]] + 2E[(f_ (x)E[y | f (x)]] (26)

_−_ 2E[f (x)y] − 2E[E[y | f (x)][2]] + 2E[E[y | f (x)]y]]

=E[E[y | f (x)][2]] + E[y[2]] − 2E[E[y | f (x)]y] (27)
+ 2E[(f (x)E[y | f (x)]] − 2E[f (x)y]

_−_ 2E[E[y | f (x)][2]] + 2E[E[y | f (x)]y]]

=E[y[2]] + 2E[(f (x)E[y | f (x)]] − 2E[f (x)y] (28)

_−_ E[E[y | f (x)][2]]
=E[(2f (x) − _y −_ E[y | f (x)])(E[y | f (x)]) − _y]_ (29)
=E[(f (x) − _y)(E[y | f_ (x)] − _y)]_ (30)
+ E[(f (x) − E[y | f (x)])(E[y | f (x)] − _y)]._

By the law of total expectation, we will write the above as

MSE(f ) − CE2(f )[2] = E[E[(f (x) − _y)(E[y | f_ (x)] − _y)_ (31)
+ (f (x) − E[y | f (x)])(E[y | f (x)] − _y) | f_ (x)]].

Focusing on the inner conditional expectation, we have that

E[(f (x) − _y)(E[y | f_ (x)] − _y) + (f_ (x) − E[y | f (x)])(E[y | f (x)] − _y) | f_ (x)]
=E[y | f (x)](f (x) − 1)(E[y | f (x)] − 1) + (1 − E[y | f (x)])f (x)E[y | f (x)]
+ E[y | f (x)](f (x) − E[y | f (x)])(E[y | f (x)] − 1)
+ (1 − E[y | f (x)])(f (x) − E[y | f (x)])E[y | f (x)] (32)
=(1 − E[y | f (x)])E[y | f (x)] ≥ 0 _∀f_ (x) (33)

and therefore

MSE(f ) − CE2(f )[2] = E[(1 − E[y | f (x)])E[y | f (x)]] ≥ 0. (34)

The expectation in Equation 34 is over variances of Bernoulli random variables with probabilities
E[y | f (x)].


-----

B RESULTS

Table 2 summarizes the marginal L2 ECE and accuracy for the two datasets across multiple architectures and training loss functions. The scatter plots in Figures 6 and 7 show the accuracy and both
_L1 and L2 ECE, for top-label and marginal calibration on CIFAR-10 and CIFAR-100, respectively._
KDE-CRE is trained by directly minimizing the metric that is evaluated, e.g., in the first column we
minimize marginal L1 calibration error and in the last column we optimize the L2 top label calibration error. Other methods do not have the flexibility of choosing the type of calibration and the Lp
norm.

Table 2: Accuracy and marginal L2 ECE (%) computed with 15 bins for different approaches,
trained from scratch (Pre T) and after temperature scaling (Post T).

**CIFAR-10** **CIFAR-100**
**Loss** **Metric** ResNet ResNet (SD) Wide-ResNet DenseNet ResNet ResNet (SD) Wide-ResNet DenseNet

Pre T 0.020 0.009 0.007 0.008 0.002 0.002 0.001 0.001
ECE
Post T (NLL) 0.007 0.005 0.008 0.004 0.002 0.001 0.001 0.001
**CRE**

Pre T 0.925 0.926 0.950 0.947 0.700 0.728 0.797 0.756
Acc
Post T (NLL) 0.927 0.925 0.950 0.947 0.700 0.729 0.794 0.758


Pre T 0.009 0.015 0.009 0.004 0.003 0.001 0.003 0.003
ECE
Post T (NLL) 0.013 0.009 0.009 0.005 0.002 0.001 0.002 0.003
**MMCE**

Pre T 0.929 0.925 0.947 0.944 0.693 0.723 0.767 0.748
Acc
Post T (NLL) 0.926 0.926 0.949 0.945 0.691 0.722 0.770 0.743

Pre T 0.013 0.020 0.026 0.005 0.003 0.002 0.003 0.002
ECE
Post T (NLL) 0.008 0.009 0.022 0.004 0.002 0.002 0.002 0.001
**FL-53**

Pre T 0.922 0.920 0.936 0.948 0.695 0.711 0.760 0.752
Acc
Post T (NLL) 0.923 0.919 0.936 0.949 0.693 0.712 0.763 0.753

Pre T 0.010 0.015 0.007 0.008 0.002 0.002 0.001 0.001
ECE
Post T (NLL) 0.004 0.012 0.008 0.009 0.002 0.002 0.001 0.001
_L2 KDE-CRE_

Pre T 0.930 0.922 0.950 0.943 0.707 0.713 0.797 0.757
Acc
Post T (NLL) 0.930 0.921 0.950 0.944 0.707 0.717 0.794 0.755

C RELATIONSHIP BETWEEN THE BINNED ESTIMATOR AND THE KERNEL
DENSITY ESTIMATOR

Figure 8 shows an example of the binned estimator in a three-class setting on CIFAR-10. The points
are mostly concentrated at the edges of the histogram, as can be seen from Figure 8b. The surface
of the corresponding Dirichlet KDE is given in 8c.
Figure 9 shows the relationship between the binned estimator and our KDE-ECE metric. The points
represent a trained Resnet-56 model on a subset of three classes from CIFAR-10. In every row, a
differnt number of points was used to estimate the KDE-ECE.

D EXPERIMENTS FOR REBUTTAL

D.1 TRAINING TIME MEASUREMENTS

In Table 3 we summarize the running time per epoch for training with (KDE-CRE) and without
(CRE) regularization for the two datasets and four architectures. KDE-CRE does not create an
overhead of more than a couple percent over the CRE baseline.

D.2 CANONICAL CALIBRATION IN A MEDICAL APPLICATION

An additional experiment with a medical application, where the canonical calibration is of particular
interest, was performed on the publicly-available Kather dataset (Kather et al., 2016), which consists
of 5000 histological images of human colorectal cancer. The data has eight different classes of tissue.
Figure 10 shows a comparison in performance of the CRE baseline with our KDE-CRE method. The
canonical L1 (left) and L2 (right) calibration is measured using our KDE-ECE metric. The results
clearly illustrate that our method significantly outperforms the cross-entropy baseline, both in terms
of accuracy and calibration error, for several choices of the regularization parameter.

D.3 BIAS AND CONVERGENCE RATES

Figure 11 shows a comparison of the groud truth, computed from 3000 test points with KDE-ECE
against KDE-ECE and binned ECE estimated with a varying number of points used for the estima

-----

Marginal calibration on CIFAR10 using Densenet


Top-label calibration on CIFAR10 using Densenet


Marginal calibration on CIFAR10 using Densenet


Top-label calibration on CIFAR10 using Densenet


0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000


0.10

0.08

0.06

0.04

0.02

0.00

0.06

0.05

0.04

0.03

0.02

0.01


0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000


0.020

0.015

0.010

0.005

0.000

0.012

0.010

0.008

0.006

0.004

0.002

|6|0.3|4 0.20.3|MMCE L L1 2 K KD DE E- -C CR RE E 2|
|---|---|---|---|

|6|0.3|4 0.20.3 0.2|MMCE L L1 2 K KD DE E- -C CR RE E 53 00.0.0 052.1 1 .053|
|---|---|---|---|

|Col1|10|4|MMCE L L1 2 K KD DE E- -C CR RE E|
|---|---|---|---|

|6|10|4|MMCE L L1 2 K KD DE E- -C CR RE E 53|
|---|---|---|---|


10 CREFL

MMCE

6 LL12 KDE-CRE KDE-CRE

4

0.3 0.2 0.3 2

0.2 0.050.10.10.0531.053

0.86 0.88 0.90ACC 0.92 0.94

Marginal calibration on CIFAR10 using Resnet


10 CREFL

MMCE
LL12 KDE-CRE KDE-CRE

6

4

0.3 0.2 0.3 0.2 0.050.10.10.052 3 53

1.0

0.86 0.88 0.90ACC 0.92 0.94

Top-label calibration on CIFAR10 using Resnet


CRE

6 FLMMCE

10 LL12 KDE-CRE KDE-CRE

4

0.3 0.2 0.3 0.2 0.050.10.10.052 31.053

0.86 0.88 0.90ACC 0.92 0.94

Marginal calibration on CIFAR10 using Resnet


CRE
FL

10 MMCELL12 KDE-CRE KDE-CRE

6 53

4

0.3 0.2 0.3 0.2 0.050.10.10.052 31.0

0.86 0.88 0.90ACC 0.92 0.94

Top-label calibration on CIFAR10 using Resnet

|Col1|Col2|10|CRE FL|
|---|---|---|---|
|0.3||6 0.2 304 0.3 .1|MMCE L L1 2 K KD DE E- -C CR RE E|

|Col1|Col2|10|CRE FL|
|---|---|---|---|
|0.3||0.2 06 .3 0.1 0. 02 34|MMCE L L1 2 K KD DE E- -C CR RE E 53 .050.050.1 0.5|

|Col1|Col2|Col3|Col4|CRE FL|
|---|---|---|---|---|
||||10 6|MMCE L L1 2 K KD DE E- -C CR RE E|

|Col1|Col2|Col3|CRE FL|
|---|---|---|---|
|||10 6|MMCE L L1 2 K KD DE E- -C CR RE E 53|


CRE

10 FLMMCE

6 LL12 KDE-CRE KDE-CRE

0.3

0.2 0.3 30.14 0.20.052 530.050.10.5

1.0


CRE

10 FLMMCE

LL12 KDE-CRE KDE-CRE

0.3 0.2 0.36 0.1 0.20.05530.050.1

34 0.5

1.0

2


CRE
FL

10 MMCE

LL12 KDE-CRE KDE-CRE

6

0.3 0.2 0.3 30.14 0.20.052 530.050.11.00.5


CRE
FL

10 MMCELL12 KDE-CRE KDE-CRE

6 53

0.3 0.2 0.3 0.14 0.20.050.050.1

3 2 1.00.5


0.87 0.88 0.89 0.90ACC 0.91 0.92 0.93

Marginal calibration on CIFAR10 using Resnet (SD)


0.87 0.88 0.89 0.90ACC 0.91 0.92 0.93

Top-label calibration on CIFAR10 using Resnet (SD)


0.87 0.88 0.89 0.90ACC 0.91 0.92 0.93

Marginal calibration on CIFAR10 using Resnet (SD)


0.87 0.88 0.89 0.90ACC 0.91 0.92 0.93

Marginal calibration on CIFAR10 using Resnet (SD)


0.05

0.04

0.03

0.02

0.01

0.00

0.014

0.012

0.010

0.008

0.006

0.004

0.002


0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000


0.05

0.04

0.03

0.02

0.01

0.00

0.2 CREFL

MMCE
LL12 KDE-CRE KDE-CRE

0.2

106

0.30.3 3

0.1 0.050.15341.020.05


0.025

0.020

0.015

0.010

0.005

0.000


0.08

0.06

0.04

0.02

0.00

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00




0.050.1531.020.05

|.2|Col2|CRE FL MMCE|
|---|---|---|
|||L L1 2 K KD DE E- -C CR RE E|
|0.2||160 0.03.3 3 4|

|Col1|Col2|Col3|CRE|
|---|---|---|---|
||0.2||FL MMCE L L1 2 K KD DE E- -C CR R10E E 6|
|0.2|||3 0.3 0.05 0054..3015 00.3.1 1.0|

|0.2|Col2|CRE|
|---|---|---|
|||FL MMCE|
|||L L1 2 K KD DE E- -C CR RE E|
||||

|.2|Col2|CRE FL MMCE|
|---|---|---|
|||L L1 2 K KD DE E- -C CR RE E|
|0.2||160 0.03.3 3 4|



0.2 CREFL

MMCE
LL12 KDE-CRE KDE-CRE

0.2

106

0.30.3 3

0.1 0.050.15341.020.05


CRE

0.2 FLMMCE

LL12 KDE-CRE KDE-CRE10

36

0.2 0.3 0.05

0.050.1534

0.30.1 1.02


0.2 CREFL

MMCE
LL12 KDE-CRE KDE-CRE

0.2 0.30.10.3 31.00.05100.1534620.05


0.2 0.4 ACC 0.6 0.8


0.2 0.4 ACC 0.6 0.8


0.2 0.4 ACC 0.6 0.8


0.2 0.4 ACC 0.6 0.8


Marginal calibration on CIFAR10 using Wideresnet

|Col1|Col2|Col3|CRE|
|---|---|---|---|
|||10 6|FL MMCE L L1 2 K KD DE E- -C CR RE E|
|0.3||4 2 0.20.3 53|3|


CRE

10 FL

MMCE
LL12 KDE-CRE KDE-CRE

6

4

0.3 2

0.20.3 530.2 0.10.131.00.050.01


0.89 0.90 0.91 0.92 ACC0.93 0.94 0.95 0.96


Top-label calibration on CIFAR10 using Wideresnet

|Col1|Col2|Col3|Col4|CRE|
|---|---|---|---|---|
||||10|FL MMCE L L1 2 K KD DE E- -C CR RE E|
||0.3||6 0.240.3 0.2 0 0.|1 .10.050.01 3|


CRE

10 FLMMCE

LL12 KDE-CRE KDE-CRE

6

0.3 0.240.3 0.2 0.10.13 0.050.01

2 53

1.0


0.89 0.90 0.91 0.92 ACC0.93 0.94 0.95 0.96


Marginal calibration on CIFAR10 using Wideresnet

|Col1|Col2|Col3|CRE|
|---|---|---|---|
|||10|FL MMCE L L1 2 K KD DE E- -C CR RE E|
||6|4 253||


CRE

10 FLMMCE

LL12 KDE-CRE KDE-CRE

6 4

0.3 0.20.3 2 530.2 0.10.131.00.050.01


0.89 0.90 0.91 0.92 ACC0.93 0.94 0.95 0.96


Top-label calibration on CIFAR10 using Wideresnet

|Col1|Col2|Col3|CRE|
|---|---|---|---|
|||10|FL MMCE L L1 2 K KD DE E- -C CR RE E|
|||6 0.|1|


CRE
FL

10 MMCE

LL12 KDE-CRE KDE-CRE

6

0.3 0.240.3 2 530.2 0.10.131.00.050.01


0.89 0.90 0.91 0.92 ACC0.93 0.94 0.95 0.96


Figure 6: Top-label and marginal calibration on CIFAR-10.

Table 3: Training time [sec] per epoch for Cross-Entropy and KDE-CE methods for different models
and datasets.


## Dataset Model CRE L1 KDE-CRE


## ResNet-110 51.8 53 ResNet-110 (SD) 45 46 Wide-ResNet-28-10 152.9 154.9 DenseNet-40 103.2 106.8
 ResNet-110 90 92.9 ResNet-110 (SD) 78.2 80.7 Wide-ResNet-28-10 150.5 155.3 DenseNet-40 101 105.5


## CIFAR-10

 CIFAR-100


tion. The used model is a ResNet-56, trained on a subset of three classes from CIFAR-10. The figure
shows that the two estimates are comparable and both are doing a reasonable job.
Figure 12 shows the absolute difference between the ground truth and estimated ECE using our KDE
estimator and a binned estimator with varying number of points used for estimation. The results are


-----

Marginal calibration on CIFAR100 using Densenet

|Col1|0.2 0.3 3 0.3|0.1530.10.01 0.01|
|---|---|---|


CRE

4 0.2 2 1.0 FLMMCELL12 KDE-CRE KDE-CRE

0.2

0.3 3 0.1 53 0.10.01

0.3 0.01


0.72 0.73 0.74ACC 0.75 0.76


Top-label calibration on CIFAR100 using Densenet

|CRE FL MMC L1 K|0.3 0.2 2 4 E 3 DE-CRE|53 0.1|
|---|---|---|


0.3

0.01

0.30.2 1.00.1 53 0.01

0.2 2 0.1

4

CRE
FL
MMCE 3
LL12 KDE-CRE KDE-CRE


0.72 0.73 0.74ACC 0.75 0.76


Marginal calibration on CIFAR100 using Densenet


Top-label calibration on CIFAR100 using Densenet

|Col1|0 4|0 .3.2 10.0.153 0.2 2 3|0.01 0.1 CRE FL MMCE L1 KDE-CRE|
|---|---|---|---|


0.3 0.01

0.30.2 1.00.1 53 0.01

0.2 2 0.1

CRE

4 FLMMCE

3 LL12 KDE-CRE KDE-CRE


0.72 0.73 0.74ACC 0.75 0.76



0.0013

0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.0015

0.0014

0.0013

0.0012

0.0011

0.0010

0.0009


0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.030

0.025

0.020

0.015

0.010

0.005

0.000


3.0

2.5

2.0

1.5

1.0

0.5

3.5

3.0

2.5

2.0

1.5

1.0


0.10

0.08

0.06

0.04

0.14

0.12

0.10

0.08

0.06

0.04

|Col1|4 0.3 03.2 0.3|53 0.1 0.100 .0.0 11|
|---|---|---|


1e 5

1.0 CREFL

0.2 2 MMCELL12 KDE-CRE KDE-CRE

4

0.3 0.30.23 0.1 53 0.10.010.01

0.72 0.73 0.74ACC 0.75 0.76

Marginal calibration on CIFAR100 using Resnet


Marginal calibration on CIFAR100 using Resnet

|Col1|Col2|0.3 3|0.2 0.01 0.3 0.10.01 0.1|
|---|---|---|---|
||CRE FL MM|CE||
||L L1 2 K K|DE-CRE DE-CRE||


2 460.2 1.053

0.2 0.01

0.3 3 0.3 0.1 0.01

0.1

CRE
FL
MMCE
LL12 KDE-CRE KDE-CRE


0.65 0.66 0.67 0.68ACC 0.69 0.70 0.71


Top-label calibration on CIFAR100 using Resnet

|Col1|Col2|2 4|Col4|
|---|---|---|---|
|||2 60.20.3|0.1 0.3 0.2|
||CRE FL MMC|E|3|
||L L1 2 K K|DE-CRE DE-CRE||


1.0

530.010.1 0.01

2 460.2 0.3 0.3 0.1

0.2

CRE
FL
MMCELL12 KDE-CRE KDE-CRE 3


0.65 0.66 0.67 0.68ACC 0.69 0.70 0.71


Top-label calibration on CIFAR100 using Resnet

|Col1|L KD|DE-CRE|0.|.1 0.01|
|---|---|---|---|---|
||L2 K|DE-CRE 2 4 0 6|.20.3 0.3 0.2|0.1|
||||||
||||3||


CRE
FLMMCELL12 KDE-CRE KDE-CRE 1.0530.010.1 0.01

2 460.2 0.3 0.3 0.1

0.2

3


0.65 0.66 0.67 0.68ACC 0.69 0.70 0.71

|Col1|Col2|2|0.2 L1 KDE-CRE L KDE-CRE|
|---|---|---|---|
|||6 0.3 3|L2 KDE-CRE 1.0 0.3 0.010.1 0.01 0.1|
|||||
|||||


1e 5

40.2 53 CREFLMMCE

2 6 0.2 1.0 LL12 KDE-CRE KDE-CRE

0.3 3 0.3 0.01 0.1 0.01

0.1


0.65 0.66 0.67 0.68ACC 0.69 0.70 0.71


Marginal calibration on CIFAR100 using Resnet (SD)

|0.3|0.23 0.3|530.01 0.1 2|
|---|---|---|
|CRE FL|0.2|0.1 1. 00 .01|
|MM|CE||
|L L1 2 K K|DE-CRE DE-CRE||


0.3

530.01

0.2 3

0.3 0.1 2

0.2 0.1 1.00.01

CRE
FL
MMCE
LL12 KDE-CRE KDE-CRE


0.64 0.66 0.68ACC 0.70 0.72 0.74


Top-label calibration on CIFAR100 using Resnet (SD)


|1e 5 M|Marginal calibration on CIFAR100|using Resnet (SD)|
|---|---|---|
|0.3|3 0.2|530.01 2|
|CRE FL MMC|0.3 0.2 E|0.1 0.1 1. 00 .01|
|L L1 2 K K|DE-CRE DE-CRE||


0.64 0.66 0.68ACC 0.70 0.72 0.74


Marginal calibration on CIFAR100 using Resnet (SD)

|0.3|0.3|5 0.23 0.|30.01 1 2|
|---|---|---|---|
|CRE FL||0 0.2|.1 1. 00 .01|
|MM|CE|||
|L L1 2 K K|DE-CRE DE-CRE|||



0.64 0.66 0.68ACC 0.70 0.72 0.74


1e 5


2.5

2.0

1.5

1.0

0.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5


0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.10

0.08

0.06

0.04

0.02


0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.0012

0.0010

0.0008

0.0006


0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

|CRE FL MMC L L1 2 K K|E DE-CRE DE-CRE|12.00.01 0.1 0.01.01|
|---|---|---|
|0.3|0.2 0.2 0.3|53 3|
||||


0.64 0.66 0.68ACC 0.70 0.72 0.74


Marginal calibration on CIFAR100 using Wideresnet

|Col1|Col2|4 532|CRE FL MMCE|
|---|---|---|---|
|||1.0 0.3 0.10.2 0.2|3L L1 2 K KD DE E- -C CR RE E 000.. 1.0011|


0.34 53 2 1.0 3CREFLMMCELL12 KDE-CRE KDE-CRE

0.10.2

0.2 0.10.010.01

0.3


0.74 0.75 0.76 0.77ACC 0.78 0.79 0.80 0.81


Top-label calibration on CIFAR100 using Wideresnet

|Col1|Col2|0.2 0.1|0.1|
|---|---|---|---|
||0|0.2 .3 0.3 1.0 4 532|0.01 0.01|


0.20.10.2 0.1

0.3

0.01

0.3 1.0 0.01

4 53 2

CRE
FL
MMCELL12 KDE-CRE KDE-CRE 3


0.74 0.75 0.76 0.77ACC 0.78 0.79 0.80 0.81



Top-label calibration on CIFAR100 using Wideresnet

|Col1|CRE FL MMC|E|Col4|Col5|
|---|---|---|---|---|
||L L1 2 K K 0|DE-CRE DE-CRE .3|0.2 0.1 0.2 1.0|0.1 0.01 0.01|


CRE
FL
MMCELL12 KDE-CRE KDE-CRE 0.20.10.2 0.1

0.3 0.010.01

1.0

4 0.3 53 2

3


0.74 0.75 0.76 0.77ACC 0.78 0.79 0.80 0.81

|1e 5|Col2|Marginal calibration on CIFAR100|0 using Wideresnet|
|---|---|---|---|
|||4|CRE FL MMCE|
|||5321.0 0.1|L L1 2 K KD DE E- -C CR RE E|


4 CREFL

MMCE

53 2 1.0 LL12 KDE-CRE KDE-CRE

0.3 0.1

0.3 0.2 0.2 0.10.010.013


0.74 0.75 0.76 0.77ACC 0.78 0.79 0.80 0.81


Figure 7: Top-label and marginal calibration on CIFAR-100


0.0

1.0

0.2

0.8

0.4

0.6

0.6

0.4

0.8

0.2

1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0

(a) Splitting the simplex in 16 bins


0.00 0.05 0.10 0.15 0.20 0.25 0.30

(b) Corresponding histogram (c) Corresponding Dirichlet KDE


Figure 8: An example of a simplex binned estimator and kernel-density estimator for CIFAR-10

averaged over 120 ResNet-56 models trained on a subset of three classes from CIFAR-10. Both
estimators are biased and have some variance, and the plot shows that the combination of the two is
in the same order of magnitude. The empirical convergence rates (slope of the log-log plot) is given
in the legend and is shown to be close to the theoretically expected value of -0.5.


D.4 CHOICE OF THE BATCH SIZE

In Figure 13 we investigate the choice of the batch size on CIFAR-10. To this end, we use two
differently shuffled dataloaders that draw random batches from the same training set. The first
dataloader provides batches to the loss term (CRE) while the second dataloader provides the batches
for the regularization (KDE). The batch size for the loss term is fixed in all experiments, while the


-----

0.40 Canonical, using 100 points, 25 bins, 0.001 bandwidth

0.35

0.30

0.25

0.20

Binned ECE 0.15

0.10

0.05

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

KDE ECE

Canonical, using 500 points, 25 bins, 0.001 bandwidth

0.30

0.25

0.20

0.15

Binned ECE 0.10

0.05

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30

KDE ECE

Canonical, using 1000 points, 25 bins, 0.001 bandwidth

0.25

0.20

0.15

Binned ECE 0.10

0.05

0.00

0.00 0.05 0.10 0.15 0.20 0.25

KDE ECE


Marginal, using 100 points, 25 bins, 0.001 bandwidth

0.10

0.08

0.06

Binned ECE 0.04

0.02

0.00

0.00 0.02 0.04 0.06 0.08 0.10

KDE ECE

Marginal, using 500 points, 25 bins, 0.001 bandwidth

0.06

0.05

0.04

0.03

Binned ECE

0.02

0.01

0.00

0.00 0.01 0.02 0.03 0.04 0.05 0.06

KDE ECE

Marginal, using 1000 points, 25 bins, 0.001 bandwidth

0.05

0.04

0.03

Binned ECE 0.02

0.01

0.00

0.00 0.01 0.02 0.03 0.04 0.05

KDE ECE


Top-label, using 100 points, 25 bins, 0.001 bandwidth

0.10

0.08

0.06

Binned ECE 0.04

0.02

0.00

0.00 0.02 0.04 0.06 0.08 0.10

KDE ECE

Top-label, using 500 points, 25 bins, 0.001 bandwidth

0.08

0.07

0.06

0.05

0.04

Binned ECE 0.03

0.02

0.01

0.00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

KDE ECE

Top-label, using 1000 points, 25 bins, 0.001 bandwidth

0.08

0.07

0.06

0.05

0.04

Binned ECE 0.03

0.02

0.01

0.00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

KDE ECE


Figure 9: Relationship between the ECE metric based on binning and kernel density estimation
(KDE-ECE) for the three types of calibration: canonical, marginal and top-label. In every row, a
different number of points are used to approximate the KDE-ECE.


0.40

0.35


0.18

0.16


0.30

0.25


0.14

0.12


0.20

|0|.01|Col3|C L|RE KDE-CRE|
|---|---|---|---|---|
|||1 L2|1 L2|KDE-CRE|
||0.1||||
||0.2||||
||0.3 0.2|0.01|||
||||||
|||0.3 0.1|||
||||||

|Col1|0.01|CRE L1 KDE-CRE|
|---|---|---|
||0.2|L2 KDE-CRE|
||||
||0.1|0.01|
||0.2||
||||
||0.3|0.3|
||0.1||


0.01 CRE

L1 KDE-CRE

L2 KDE-CRE

0.1

0.2

0.3

0.2 0.01

0.3

0.1


0.84 0.86 0.88 0.90

ACC


0.84 0.86 0.88 0.90

ACC


Figure 10: Canonical calibration on Kather using a Resnet-50 model

batch size for the regularization varies. The orange point is our normal experimental set-up with just
one dataloader (i.e. the same points are used for loss and KDE-ECE computation) as a comparison.
The plot shows that our chosen batch size of 128 is appropriate for our purposes.


-----

0.00

0.02

0.04

0.06

0.08

0.10


|Col1|Col2|Col3|Col4|Col5|Col6|Ground tru KDE-ECE Binned EC|th E|
|---|---|---|---|---|---|---|---|
|||||||||
|||||||||
|||||||||
|||||||||
|||||||||
|||||||||


200 400 600 800 1000

# points


|Col1|Col2|Col3|Col4|Col5|Ground tru|th|
|---|---|---|---|---|---|---|
||||||KDE-ECE Binned EC|E|
||||||||
||||||||
||||||||
||||||||
||||||||
||||||||


200 400 600 800 1000

# points


|Col1|Col2|Col3|Col4|Col5|Col6|Ground tru KDE-ECE|th|
|---|---|---|---|---|---|---|---|
|||||||Binned EC|E|
|||||||||
|||||||||
|||||||||
|||||||||
|||||||||


200 400 600 800 1000

# points


0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000


0.05

0.04

0.03

0.02

0.01

0.00


(a) Canonical


(b) Marginal


(c) Top-label


Figure 11: KDE-ECE estimates and their corresponding binned approximations on the three types
of calibration for varying number of points used for the estimation. The ground truth is calculated
using 3000 probability scores of the test set. For the binned estimate, the points are assigned in 25
bins with adaptive width. A bandwidth of 0.001 is used for KDE-ECE.


3 × 10

2 × 10

10




4 × 10

3 × 10

2 × 10


10

6 × 10

4 × 10

3 × 10


6 × 10

4 × 10

|Col1|KDE-ECE slope = 0.3 Binned ECE slope = 0.3|KDE-ECE slope = 0.3 Binned ECE slope = 0.3|8 2|
|---|---|---|---|
|||||

|Col1|Col2|KDE-ECE slope = 0.4 Binned ECE slope = 0.5|0 2|
|---|---|---|---|
|||||

|Col1|KDE-ECE slope = 0.5 Binned ECE slope = 0.4|6|
|---|---|---|
|||6|
||||


102 10

Number of points

(a) Canonical


102 10

Number of points

(b) Marginal


102 10

Number of points

(c) Top-label


Figure 12: Absolute difference between ground truth and estimated ECE for varying number of
points used for the estimation. The ground truth is calculated using 3000 probability scores of the
test set. For the binned estimate, the points are assigned in 25 bins with adaptive width. A bandwidth
of 0.001 is used for KDE-ECE. Note that the axes are on a log scale.


-----

0.0055

0.0050

0.0045

0.0040

0.0035

0.0030

0.0025

0.050


0.00030

0.00025

0.00020

0.00015


0.00010

0.00005

0.008

|Col1|Col2|Col3|Col4|Col5|Col6|Col7|L|1 2 KDE-CRE|
|---|---|---|---|---|---|---|---|---|
|||||||L 64|L|1 KDE-CRE|
||||||||||
||||1|28|||||
|||128 256||||2|||
||||||51||||
|||||||||32|
||||||||||
||||||||||
||||||||||

|Col1|Col2|Col3|Col4|Col5|Col6|Col7|L1 L1|2 KDE-CRE KDE-CRE|
|---|---|---|---|---|---|---|---|---|
||||||||||
|||||||64|||
||||||||||
|||128|1|28|||||
||||||||||
|||256|||51|2||32|
||||||||||
||||||||||
||||||||||


0.915 0.920 0.925 0.930 0.935 0.940

ACC

|Col1|Col2|Col3|Col4|Col5|Col6|L L|L L|1 2 KDE-CRE 1 KDE-CRE|
|---|---|---|---|---|---|---|---|---|
||||||||||
||||||51|2|||
||||||||||
|||256||||64|||
|||128|||||||
||||12|8||||32|
||||||||||
||||||||||


L1 2 KDE-CRE

L1 KDE-CRE

512

256

128 128 64

32


0.915 0.920 0.925 0.930 0.935 0.940

ACC


0.915 0.920 0.925 0.930 0.935 0.940

ACC

|Col1|Col2|Col3|Col4|Col5|Col6|L1 L1|L1 L1|2 KDE-CRE KDE-CRE|
|---|---|---|---|---|---|---|---|---|
||||||||||
||||||512||||
||||||||||
|||256||||64|||
||||||||||
|||128|1|28||||32|
||||||||||
||||||||||



0.915 0.920 0.925 0.930 0.935 0.940

ACC


0.007

0.006


0.045

0.040


0.005

0.004


0.035

0.030


0.003


Figure 13: Training with different batches for loss and regularization (2 KDE-CRE), where the batch
size for the loss is fixed and the batch size for the regularization varies. The orange point shows our
usual experimental set-up where we train with only one batch (KDE-CRE). Upper row: marginal,
lower row: top-label.


-----