pradachan's picture
Upload folder using huggingface_hub
f71c233 verified
raw
history blame
20.2 kB
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
import json
import os
import os.path as osp
from scipy.signal import savgol_filter
# LOAD FINAL RESULTS:
datasets = ["x_div_y", "x_minus_y", "x_plus_y", "permutation"]
folders = os.listdir("./")
final_results = {}
results_info = {}
for folder in folders:
if folder.startswith("run") and osp.isdir(folder):
with open(osp.join(folder, "final_info.json"), "r") as f:
final_results[folder] = json.load(f)
results_dict = np.load(
osp.join(folder, "all_results.npy"), allow_pickle=True
).item()
print(results_dict.keys())
run_info = {}
for dataset in datasets:
run_info[dataset] = {}
val_losses = []
train_losses = []
val_accs = []
train_accs = []
for k in results_dict.keys():
if dataset in k and "val_info" in k:
run_info[dataset]["step"] = [
info["step"] for info in results_dict[k]
]
val_losses.append([info["val_loss"] for info in results_dict[k]])
val_accs.append([info["val_accuracy"] for info in results_dict[k]])
if dataset in k and "train_info" in k:
train_losses.append(
[info["train_loss"] for info in results_dict[k]]
)
train_accs.append(
[info["train_accuracy"] for info in results_dict[k]]
)
mean_val_losses = np.mean(val_losses, axis=0)
mean_train_losses = np.mean(train_losses, axis=0)
mean_val_accs = np.mean(val_accs, axis=0)
mean_train_accs = np.mean(train_accs, axis=0)
if len(val_losses) > 0:
sterr_val_losses = np.std(val_losses, axis=0) / np.sqrt(
len(val_losses)
)
stderr_train_losses = np.std(train_losses, axis=0) / np.sqrt(
len(train_losses)
)
sterr_val_accs = np.std(val_accs, axis=0) / np.sqrt(len(val_accs))
stderr_train_accs = np.std(train_accs, axis=0) / np.sqrt(
len(train_accs)
)
else:
sterr_val_losses = np.zeros_like(mean_val_losses)
stderr_train_losses = np.zeros_like(mean_train_losses)
sterr_val_accs = np.zeros_like(mean_val_accs)
stderr_train_accs = np.zeros_like(mean_train_accs)
run_info[dataset]["val_loss"] = mean_val_losses
run_info[dataset]["train_loss"] = mean_train_losses
run_info[dataset]["val_loss_sterr"] = sterr_val_losses
run_info[dataset]["train_loss_sterr"] = stderr_train_losses
run_info[dataset]["val_acc"] = mean_val_accs
run_info[dataset]["train_acc"] = mean_train_accs
run_info[dataset]["val_acc_sterr"] = sterr_val_accs
run_info[dataset]["train_acc_sterr"] = stderr_train_accs
# Add MDL info
mdl_data = [info for k, info in results_dict.items() if dataset in k and "mdl_info" in k]
if mdl_data:
run_info[dataset]["mdl_step"] = [item["step"] for item in mdl_data[0]]
run_info[dataset]["mdl"] = [item["mdl"] for item in mdl_data[0]]
results_info[folder] = run_info
# CREATE LEGEND -- ADD RUNS HERE THAT WILL BE PLOTTED
labels = {
"run_0": "Baseline",
"run_1": "MDL Tracking",
"run_2": "MDL Analysis",
"run_3": "Extended Analysis",
"run_4": "Comprehensive Analysis",
}
# Create a programmatic color palette
def generate_color_palette(n):
cmap = plt.get_cmap("tab20")
return [mcolors.rgb2hex(cmap(i)) for i in np.linspace(0, 1, n)]
# Get the list of runs and generate the color palette
runs = list(labels.keys())
colors = generate_color_palette(len(runs))
# Plot 1: Line plot of training loss for each dataset across the runs with labels
for dataset in datasets:
plt.figure(figsize=(10, 6))
for i, run in enumerate(runs):
iters = results_info[run][dataset]["step"]
mean = results_info[run][dataset]["train_loss"]
sterr = results_info[run][dataset]["train_loss_sterr"]
plt.plot(iters, mean, label=labels[run], color=colors[i])
plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2)
plt.title(f"Training Loss Across Runs for {dataset} Dataset")
plt.xlabel("Update Steps")
plt.ylabel("Training Loss")
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig(f"train_loss_{dataset}.png")
plt.close()
# Plot 2: Line plot of validation loss for each dataset across the runs with labels
for dataset in datasets:
plt.figure(figsize=(10, 6))
for i, run in enumerate(runs):
iters = results_info[run][dataset]["step"]
mean = results_info[run][dataset]["val_loss"]
sterr = results_info[run][dataset]["val_loss_sterr"]
plt.plot(iters, mean, label=labels[run], color=colors[i])
plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2)
plt.title(f"Validation Loss Across Runs for {dataset} Dataset")
plt.xlabel("Update Steps")
plt.ylabel("Validation Loss")
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig(f"val_loss_{dataset}.png")
plt.close()
# Plot 3: Line plot of training acc for each dataset across the runs with labels
for dataset in datasets:
plt.figure(figsize=(10, 6))
for i, run in enumerate(runs):
iters = results_info[run][dataset]["step"]
mean = results_info[run][dataset]["train_acc"]
sterr = results_info[run][dataset]["train_acc_sterr"]
plt.plot(iters, mean, label=labels[run], color=colors[i])
plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2)
plt.title(f"Training Accuracy Across Runs for {dataset} Dataset")
plt.xlabel("Update Steps")
plt.ylabel("Training Acc")
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig(f"train_acc_{dataset}.png")
plt.close()
# Plot 2: Line plot of validation acc for each dataset across the runs with labels
for dataset in datasets:
plt.figure(figsize=(10, 6))
for i, run in enumerate(runs):
iters = results_info[run][dataset]["step"]
mean = results_info[run][dataset]["val_acc"]
sterr = results_info[run][dataset]["val_acc_sterr"]
plt.plot(iters, mean, label=labels[run], color=colors[i])
plt.fill_between(iters, mean - sterr, mean + sterr, color=colors[i], alpha=0.2)
plt.title(f"Validation Loss Across Runs for {dataset} Dataset")
plt.xlabel("Update Steps")
plt.ylabel("Validation Acc")
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig(f"val_acc_{dataset}.png")
plt.close()
# Plot 5: MDL estimates alongside validation accuracy
for dataset in datasets:
plt.figure(figsize=(10, 6))
for i, run in enumerate(runs):
if run != "run_0": # Skip baseline run
iters = results_info[run][dataset]["step"]
val_acc = results_info[run][dataset]["val_acc"]
mdl_step = results_info[run][dataset]["mdl_step"]
mdl = results_info[run][dataset]["mdl"]
# Normalize MDL values
mdl_normalized = (mdl - np.min(mdl)) / (np.max(mdl) - np.min(mdl))
# Apply Savitzky-Golay filter to smooth MDL curve
mdl_smooth = savgol_filter(mdl_normalized, window_length=5, polyorder=2)
plt.plot(iters, val_acc, label=f"{labels[run]} - Val Acc", color=colors[i])
plt.plot(mdl_step, mdl_smooth, label=f"{labels[run]} - MDL", linestyle='--', color=colors[i])
plt.title(f"Validation Accuracy and MDL for {dataset} Dataset")
plt.xlabel("Update Steps")
plt.ylabel("Validation Accuracy / Normalized MDL")
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig(f"val_acc_mdl_{dataset}.png")
plt.close()
# Calculate MDL transition point and correlation
mdl_analysis = {}
for dataset in datasets:
mdl_analysis[dataset] = {}
for run in runs:
if run != "run_0": # Skip baseline run
mdl = results_info[run][dataset]["mdl"]
mdl_step = results_info[run][dataset]["mdl_step"]
val_acc = results_info[run][dataset]["val_acc"]
train_acc = results_info[run][dataset]["train_acc"]
# Calculate MDL transition point (steepest decrease)
mdl_diff = np.diff(mdl)
mdl_transition_idx = np.argmin(mdl_diff)
mdl_transition_point = mdl_step[mdl_transition_idx]
# Find grokking point (95% validation accuracy)
grokking_point = next((step for step, acc in zip(results_info[run][dataset]["step"], val_acc) if acc >= 0.95), None)
# Calculate correlation between MDL reduction and validation accuracy improvement
mdl_normalized = (mdl - np.min(mdl)) / (np.max(mdl) - np.min(mdl))
val_acc_interp = np.interp(mdl_step, results_info[run][dataset]["step"], val_acc)
correlation = np.corrcoef(mdl_normalized, val_acc_interp)[0, 1]
# Calculate generalization gap
train_acc_interp = np.interp(mdl_step, results_info[run][dataset]["step"], train_acc)
gen_gap = train_acc_interp - val_acc_interp
mdl_analysis[dataset][run] = {
"mdl_transition_point": mdl_transition_point,
"grokking_point": grokking_point,
"correlation": correlation,
"mdl": mdl,
"mdl_step": mdl_step,
"val_acc": val_acc_interp,
"gen_gap": gen_gap
}
# Plot MDL transition point vs Grokking point
plt.figure(figsize=(10, 6))
for dataset in datasets:
for run in runs:
if run != "run_0":
mdl_tp = mdl_analysis[dataset][run]["mdl_transition_point"]
grok_p = mdl_analysis[dataset][run]["grokking_point"]
plt.scatter(mdl_tp, grok_p, label=f"{dataset} - {run}")
plt.plot([0, max(plt.xlim())], [0, max(plt.xlim())], 'k--', alpha=0.5)
plt.xlabel("MDL Transition Point")
plt.ylabel("Grokking Point")
plt.title("MDL Transition Point vs Grokking Point")
plt.legend()
plt.tight_layout()
plt.savefig("mdl_transition_vs_grokking.png")
plt.close()
# Plot correlation between MDL reduction and val acc improvement
plt.figure(figsize=(10, 6))
for dataset in datasets:
correlations = [mdl_analysis[dataset][run]["correlation"] for run in runs if run != "run_0"]
plt.bar(dataset, np.mean(correlations), yerr=np.std(correlations), capsize=5)
plt.xlabel("Dataset")
plt.ylabel("Correlation")
plt.title("Correlation between MDL Reduction and Val Acc Improvement")
plt.tight_layout()
plt.savefig("mdl_val_acc_correlation.png")
plt.close()
# Plot MDL evolution and generalization gap
for dataset in datasets:
plt.figure(figsize=(12, 8))
for run in runs:
if run != "run_0":
mdl_step = mdl_analysis[dataset][run]["mdl_step"]
mdl = mdl_analysis[dataset][run]["mdl"]
gen_gap = mdl_analysis[dataset][run]["gen_gap"]
plt.subplot(2, 1, 1)
plt.plot(mdl_step, mdl, label=f"{run} - MDL")
plt.title(f"MDL Evolution and Generalization Gap - {dataset}")
plt.ylabel("MDL")
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(mdl_step, gen_gap, label=f"{run} - Gen Gap")
plt.xlabel("Steps")
plt.ylabel("Generalization Gap")
plt.legend()
plt.tight_layout()
plt.savefig(f"mdl_gen_gap_{dataset}.png")
plt.close()
# Calculate and plot MDL transition rate
for dataset in datasets:
plt.figure(figsize=(10, 6))
for run in runs:
if run != "run_0":
mdl_step = mdl_analysis[dataset][run]["mdl_step"]
mdl = mdl_analysis[dataset][run]["mdl"]
mdl_rate = np.gradient(mdl, mdl_step)
plt.plot(mdl_step, mdl_rate, label=f"{run} - MDL Rate")
plt.title(f"MDL Transition Rate - {dataset}")
plt.xlabel("Steps")
plt.ylabel("MDL Rate of Change")
plt.legend()
plt.tight_layout()
plt.savefig(f"mdl_transition_rate_{dataset}.png")
plt.close()
# Scatter plot of MDL transition points vs grokking points
plt.figure(figsize=(10, 6))
for dataset in datasets:
for run in runs:
if run != "run_0":
mdl_tp = mdl_analysis[dataset][run]["mdl_transition_point"]
grok_p = mdl_analysis[dataset][run]["grokking_point"]
if mdl_tp is not None and grok_p is not None:
plt.scatter(mdl_tp, grok_p, label=f"{dataset} - {run}")
if plt.gca().get_xlim()[1] > 0 and plt.gca().get_ylim()[1] > 0:
plt.plot([0, max(plt.xlim())], [0, max(plt.ylim())], 'k--', alpha=0.5)
plt.xlabel("MDL Transition Point")
plt.ylabel("Grokking Point")
plt.title("MDL Transition Point vs Grokking Point")
plt.legend()
plt.tight_layout()
plt.savefig("mdl_transition_vs_grokking_scatter.png")
plt.close()
# Print analysis results
for dataset in datasets:
print(f"Dataset: {dataset}")
for run in runs:
if run != "run_0":
analysis = mdl_analysis[dataset][run]
print(f" Run: {run}")
print(f" MDL Transition Point: {analysis['mdl_transition_point']}")
print(f" Grokking Point: {analysis['grokking_point']}")
print(f" Correlation: {analysis['correlation']:.4f}")
print()
# Calculate and print average MDL transition point and grokking point for each dataset
for dataset in datasets:
mdl_tps = []
grok_ps = []
correlations = []
for run in runs:
if run != "run_0":
mdl_tps.append(mdl_analysis[dataset][run]["mdl_transition_point"])
grok_ps.append(mdl_analysis[dataset][run]["grokking_point"])
correlations.append(mdl_analysis[dataset][run]["correlation"])
avg_mdl_tp = np.mean(mdl_tps) if mdl_tps else None
avg_grok_p = np.mean(grok_ps) if grok_ps else None
avg_correlation = np.mean(correlations) if correlations else None
print(f"Dataset: {dataset}")
print(f" Average MDL Transition Point: {avg_mdl_tp:.2f if avg_mdl_tp is not None else 'N/A'}")
print(f" Average Grokking Point: {avg_grok_p:.2f if avg_grok_p is not None else 'N/A'}")
if avg_mdl_tp is not None and avg_grok_p is not None:
print(f" Difference: {abs(avg_mdl_tp - avg_grok_p):.2f}")
else:
print(" Difference: N/A")
print(f" Average Correlation: {avg_correlation:.4f if avg_correlation is not None else 'N/A'}")
# Add these lines for debugging
print(f" MDL Transition Points: {mdl_tps}")
print(f" Grokking Points: {grok_ps}")
print(f" Correlations: {correlations}")
print()
# Plot MDL Transition Rate vs Grokking Speed
try:
plt.figure(figsize=(12, 8))
for dataset in datasets:
for run in runs:
if run != "run_0":
analysis = mdl_analysis[dataset][run]
mdl_transition_rate = np.min(np.gradient(analysis['mdl'], analysis['mdl_step']))
if analysis['grokking_point'] is not None and analysis['mdl_transition_point'] is not None:
if analysis['grokking_point'] != analysis['mdl_transition_point']:
grokking_speed = 1 / (analysis['grokking_point'] - analysis['mdl_transition_point'])
else:
grokking_speed = np.inf
plt.scatter(mdl_transition_rate, grokking_speed, label=f"{dataset} - {labels[run]}", alpha=0.7)
plt.xlabel("MDL Transition Rate")
plt.ylabel("Grokking Speed")
plt.title("MDL Transition Rate vs Grokking Speed")
plt.legend()
plt.xscale('symlog')
plt.yscale('symlog')
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig("mdl_transition_rate_vs_grokking_speed.png")
plt.close()
except Exception as e:
print(f"Error plotting MDL Transition Rate vs Grokking Speed: {e}")
# Plot MDL evolution and validation accuracy for all datasets
for dataset in datasets:
plt.figure(figsize=(15, 10))
for run in runs:
if run != "run_0":
analysis = mdl_analysis[dataset][run]
mdl_step = analysis['mdl_step']
mdl = analysis['mdl']
val_acc = analysis['val_acc']
plt.plot(mdl_step, mdl, label=f'{labels[run]} - MDL')
plt.plot(mdl_step, val_acc, label=f'{labels[run]} - Val Acc')
plt.axvline(x=analysis['mdl_transition_point'], color='r', linestyle='--', label='MDL Transition')
plt.axvline(x=analysis['grokking_point'], color='g', linestyle='--', label='Grokking Point')
plt.title(f"MDL Evolution and Validation Accuracy - {dataset}")
plt.xlabel("Steps")
plt.ylabel("MDL / Validation Accuracy")
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.2)
plt.tight_layout()
plt.savefig(f"mdl_val_acc_evolution_{dataset}.png")
plt.close()
# Plot correlation between MDL reduction and validation accuracy improvement
plt.figure(figsize=(10, 6))
for dataset in datasets:
correlations = []
for run in runs:
if run != "run_0":
correlations.append(mdl_analysis[dataset][run]["correlation"])
plt.bar(dataset, np.mean(correlations), yerr=np.std(correlations), capsize=5)
plt.xlabel("Dataset")
plt.ylabel("Correlation")
plt.title("Correlation between MDL Reduction and Validation Accuracy Improvement")
plt.tight_layout()
plt.savefig("mdl_val_acc_correlation.png")
plt.close()
# Print analysis results
print("\nAnalysis Results:")
for dataset in datasets:
print(f"\nDataset: {dataset}")
for run in runs:
if run != "run_0":
analysis = mdl_analysis[dataset][run]
print(f" Run: {labels[run]}")
print(f" MDL Transition Point: {analysis['mdl_transition_point']}")
print(f" Grokking Point: {analysis['grokking_point']}")
print(f" Correlation: {analysis['correlation']:.4f}")
# Calculate and print average MDL transition point and grokking point for each dataset
print("\nAverage MDL Transition Point and Grokking Point:")
for dataset in datasets:
mdl_tps = []
grok_ps = []
correlations = []
for run in runs:
if run != "run_0":
mdl_tp = mdl_analysis[dataset][run]["mdl_transition_point"]
grok_p = mdl_analysis[dataset][run]["grokking_point"]
correlation = mdl_analysis[dataset][run]["correlation"]
if mdl_tp is not None:
mdl_tps.append(mdl_tp)
if grok_p is not None:
grok_ps.append(grok_p)
if correlation is not None:
correlations.append(correlation)
avg_mdl_tp = np.mean(mdl_tps) if mdl_tps else None
avg_grok_p = np.mean(grok_ps) if grok_ps else None
avg_correlation = np.mean(correlations) if correlations else None
print(f"\nDataset: {dataset}")
print(f" Average MDL Transition Point: {avg_mdl_tp:.2f if avg_mdl_tp is not None else 'N/A'}")
print(f" Average Grokking Point: {avg_grok_p:.2f if avg_grok_p is not None else 'N/A'}")
if avg_mdl_tp is not None and avg_grok_p is not None:
print(f" Difference: {abs(avg_mdl_tp - avg_grok_p):.2f}")
else:
print(" Difference: N/A")
print(f" Average Correlation: {avg_correlation:.4f if avg_correlation is not None else 'N/A'}")
# Add these lines for debugging
print(f" MDL Transition Points: {mdl_tps}")
print(f" Grokking Points: {grok_ps}")
print(f" Correlations: {correlations}")