|
\begin{thebibliography}{11} |
|
\providecommand{\natexlab}[1]{#1} |
|
\providecommand{\url}[1]{\texttt{#1}} |
|
\expandafter\ifx\csname urlstyle\endcsname\relax |
|
\providecommand{\doi}[1]{doi: |
|
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi |
|
|
|
\bibitem[Ba et~al.(2016)Ba, Kiros, and Hinton]{ba2016layer} |
|
Jimmy~Lei Ba, Jamie~Ryan Kiros, and Geoffrey~E Hinton. |
|
\newblock Layer normalization. |
|
\newblock \emph{arXiv preprint arXiv:1607.06450}, 2016. |
|
|
|
\bibitem[Bahamou \& Goldfarb(2023)Bahamou and Goldfarb]{Bahamou2023LayerwiseAS} |
|
Achraf Bahamou and D.~Goldfarb. |
|
\newblock Layer-wise adaptive step-sizes for stochastic first-order methods for |
|
deep learning. |
|
\newblock \emph{ArXiv}, abs/2305.13664, 2023. |
|
|
|
\bibitem[Goodfellow et~al.(2016)Goodfellow, Bengio, Courville, and |
|
Bengio]{goodfellow2016deep} |
|
Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. |
|
\newblock \emph{Deep learning}, volume~1. |
|
\newblock MIT Press, 2016. |
|
|
|
\bibitem[Hu et~al.(2021)Hu, Shen, Wallis, Allen-Zhu, Li, Wang, and |
|
Chen]{Hu2021LoRALA} |
|
J.~E. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean |
|
Wang, and Weizhu Chen. |
|
\newblock Lora: Low-rank adaptation of large language models. |
|
\newblock \emph{ArXiv}, abs/2106.09685, 2021. |
|
|
|
\bibitem[Kingma \& Ba(2014)Kingma and Ba]{kingma2014adam} |
|
Diederik~P Kingma and Jimmy Ba. |
|
\newblock Adam: A method for stochastic optimization. |
|
\newblock \emph{arXiv preprint arXiv:1412.6980}, 2014. |
|
|
|
\bibitem[Ko et~al.(2022)Ko, Lee, and Kim]{Ko2022NotAL} |
|
Yunyong Ko, Dongwon Lee, and Sang-Wook Kim. |
|
\newblock Not all layers are equal: A layer-wise adaptive approach toward |
|
large-scale dnn training. |
|
\newblock \emph{Proceedings of the ACM Web Conference 2022}, 2022. |
|
|
|
\bibitem[Loshchilov \& Hutter(2017)Loshchilov and Hutter]{loshchilov2017adamw} |
|
Ilya Loshchilov and Frank Hutter. |
|
\newblock Decoupled weight decay regularization. |
|
\newblock \emph{arXiv preprint arXiv:1711.05101}, 2017. |
|
|
|
\bibitem[Paszke et~al.(2019)Paszke, Gross, Massa, Lerer, Bradbury, Chanan, |
|
Killeen, Lin, Gimelshein, Antiga, et~al.]{paszke2019pytorch} |
|
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory |
|
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et~al. |
|
\newblock Pytorch: An imperative style, high-performance deep learning library. |
|
\newblock \emph{Advances in neural information processing systems}, 32, 2019. |
|
|
|
\bibitem[Power et~al.(2022)Power, Burda, Edwards, Babuschkin, and |
|
Misra]{power2022grokking} |
|
Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. |
|
\newblock Grokking: Generalization beyond overfitting on small algorithmic |
|
datasets. |
|
\newblock \emph{arXiv preprint arXiv:2201.02177}, 2022. |
|
|
|
\bibitem[Shea \& Schmidt(2024)Shea and Schmidt]{Shea2024WhyLS} |
|
Betty Shea and Mark Schmidt. |
|
\newblock Why line search when you can plane search? so-friendly neural |
|
networks allow per-iteration optimization of learning and momentum rates for |
|
every layer. |
|
\newblock \emph{ArXiv}, abs/2406.17954, 2024. |
|
|
|
\bibitem[Vaswani et~al.(2017)Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, |
|
Kaiser, and Polosukhin]{vaswani2017attention} |
|
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, |
|
Aidan~N Gomez, {\L}ukasz Kaiser, and Illia Polosukhin. |
|
\newblock Attention is all you need. |
|
\newblock \emph{Advances in neural information processing systems}, 30, 2017. |
|
|
|
\end{thebibliography} |
|
|