import openai import os.path as osp import shutil import json import argparse import multiprocessing import torch import os import time import sys from datetime import datetime from aider.coders import Coder from aider.models import Model from aider.io import InputOutput from ai_scientist.generate_ideas import generate_next_idea, check_idea_novelty from ai_scientist.perform_experiments import perform_experiments from ai_scientist.perform_writeup import perform_writeup, generate_latex from ai_scientist.perform_review import perform_review, load_paper, perform_improvement NUM_REFLECTIONS = 3 def print_time(): print(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) def parse_arguments(): parser = argparse.ArgumentParser(description="Run AI scientist experiments") # add type of experiment (nanoGPT, Boston, etc.) parser.add_argument( "--experiment", type=str, default="nanoGPT", help="Experiment to run AI Scientist on.", ) parser.add_argument( "--model", type=str, default="claude-3-5-sonnet-20240620", choices=[ "claude-3-5-sonnet-20240620", "gpt-4o-2024-05-13", "deepseek-coder-v2-0724", "llama3.1-405b", # Anthropic Claude models via Amazon Bedrock "bedrock/anthropic.claude-3-sonnet-20240229-v1:0", "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0", "bedrock/anthropic.claude-3-haiku-20240307-v1:0", "bedrock/anthropic.claude-3-opus-20240229-v1:0" ], help="Model to use for AI Scientist.", ) parser.add_argument( "--writeup", type=str, default="latex", choices=["latex"], help="What format to use for writeup", ) parser.add_argument( "--parallel", type=int, default=0, help="Number of parallel processes to run. 0 for sequential execution.", ) parser.add_argument( "--improvement", action="store_true", help="Improve based on reviews.", ) parser.add_argument( "--gpus", type=str, default=None, help="Comma-separated list of GPU IDs to use (e.g., '0,1,2'). If not specified, all available GPUs will be used.", ) parser.add_argument( "--num-ideas", type=int, default=50, help="Number of ideas to generate", ) return parser.parse_args() def get_available_gpus(gpu_ids=None): if gpu_ids is not None: return [int(gpu_id) for gpu_id in gpu_ids.split(",")] return list(range(torch.cuda.device_count())) def worker( queue, base_dir, results_dir, model, client, client_model, writeup, improvement, gpu_id, idea_archive, lock, ): os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) print(f"Worker {gpu_id} started.") while True: _ = queue.get() with lock: idea_archive = generate_next_idea( base_dir, client=client, model=client_model, prev_idea_archive=idea_archive, num_reflections=NUM_REFLECTIONS, ) idea_archive = check_idea_novelty( idea_archive, base_dir=base_dir, client=client, model=client_model, ) idea = idea_archive[-1] if _ is None: break success, score, _ = do_idea( base_dir, results_dir, idea, model, client, client_model, writeup, improvement, log_file=True, ) print(f"Completed idea: {idea['Name']}, Success: {success}, Score: {score}") with lock: for x in idea_archive: if x["Name"] == idea["Name"] and x["Title"] == idea["Title"]: x["Score"] = score break print(f"Worker {gpu_id} finished.") def do_idea( base_dir, results_dir, idea, model, client, client_model, writeup, improvement, log_file=False, ): ## CREATE PROJECT FOLDER timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") idea_name = f"{timestamp}_{idea['Name']}" folder_name = osp.join(results_dir, idea_name) assert not osp.exists(folder_name), f"Folder {folder_name} already exists." destination_dir = folder_name shutil.copytree(base_dir, destination_dir, dirs_exist_ok=True) with open(osp.join(base_dir, "run_0", "final_info.json"), "r") as f: baseline_results = json.load(f) baseline_results = {k: v["means"] for k, v in baseline_results.items()} exp_file = osp.join(folder_name, "experiment.py") vis_file = osp.join(folder_name, "plot.py") notes = osp.join(folder_name, "notes.txt") with open(notes, "w") as f: f.write(f"# Title: {idea['Title']}\n") f.write(f"# Experiment description: {idea['Experiment']}\n") f.write(f"## Run 0: Baseline\n") f.write(f"Results: {baseline_results}\n") f.write(f"Description: Baseline results.\n") if log_file: original_stdout = sys.stdout original_stderr = sys.stderr log_path = osp.join(folder_name, "log.txt") log = open(log_path, "a") sys.stdout = log sys.stderr = log try: print_time() print(f"*Starting idea: {idea_name}*") ## PERFORM EXPERIMENTS fnames = [exp_file, vis_file, notes] io = InputOutput( yes=True, chat_history_file=f"{folder_name}/{idea_name}_aider.txt" ) if model == "deepseek-coder-v2-0724": main_model = Model("deepseek/deepseek-coder") elif model == "llama3.1-405b": main_model = Model("openrouter/meta-llama/llama-3.1-405b-instruct") else: main_model = Model(model) coder = Coder.create( main_model=main_model, fnames=fnames, io=io, stream=False, use_git=False, edit_format="diff", ) print_time() print(f"*Starting Experiments*") try: success = perform_experiments(idea, folder_name, coder, baseline_results) except Exception as e: print(f"Error during experiments: {e}") print(f"Experiments failed for idea {idea_name}") return False, 0, idea if not success: print(f"Experiments failed for idea {idea_name}") return False, 0, idea print_time() print(f"*Starting Writeup*") ## PERFORM WRITEUP if writeup == "latex": writeup_file = osp.join(folder_name, "latex", "template.tex") fnames = [exp_file, writeup_file, notes] if model == "deepseek-coder-v2-0724": main_model = Model("deepseek/deepseek-coder") elif model == "llama3.1-405b": main_model = Model("openrouter/meta-llama/llama-3.1-405b-instruct") else: main_model = Model(model) coder = Coder.create( main_model=main_model, fnames=fnames, io=io, stream=False, use_git=False, edit_format="diff", ) try: perform_writeup(idea, folder_name, coder, client, client_model) except Exception as e: print(f"Failed to perform writeup: {e}") return False, 0, idea print("Done writeup") else: raise ValueError(f"Writeup format {writeup} not supported.") print_time() print(f"*Starting Review*") ## REVIEW PAPER if writeup == "latex": try: paper_text = load_paper(f"{folder_name}/{idea['Name']}.pdf") review = perform_review( paper_text, model="gpt-4o-2024-05-13", client=openai.OpenAI(), num_reflections=5, num_fs_examples=1, num_reviews_ensemble=5, temperature=0.1, ) review_score = review["Overall"] # Store the review in separate review.txt file with open(osp.join(folder_name, "review.txt"), "w") as f: f.write(json.dumps(review)) except Exception as e: print(f"Failed to perform review: {e}") return False, 0, idea ## IMPROVE WRITEUP if writeup == "latex" and improvement: print_time() print(f"*Starting Improvement*") try: perform_improvement(review, coder) generate_latex( coder, folder_name, f"{folder_name}/{idea['Name']}_improved.pdf" ) paper_text = load_paper(f"{folder_name}/{idea['Name']}_improved.pdf") review = perform_review( paper_text, model="gpt-4o-2024-05-13", client=openai.OpenAI(), num_reflections=5, num_fs_examples=1, num_reviews_ensemble=5, temperature=0.1, ) review_score = review["Overall"] # Store the review in separate review.txt file with open(osp.join(folder_name, "review_improved.txt"), "w") as f: f.write(json.dumps(review)) except Exception as e: print(f"Failed to perform improvement: {e}") return False, 0, idea return True, review_score, idea except Exception as e: print(f"Failed to evaluate idea {idea_name}: {str(e)}") return False, 0, idea finally: print("FINISHED IDEA") if log_file: sys.stdout = original_stdout sys.stderr = original_stderr log.close() if __name__ == "__main__": args = parse_arguments() # Check available GPUs and adjust parallel processes if necessary available_gpus = get_available_gpus(args.gpus) if args.parallel > len(available_gpus): print( f"Warning: Requested {args.parallel} parallel processes, but only {len(available_gpus)} GPUs available. Adjusting to {len(available_gpus)}." ) args.parallel = len(available_gpus) print(f"Using GPUs: {available_gpus}") # Create client if args.model == "claude-3-5-sonnet-20240620": import anthropic print(f"Using Anthropic API with model {args.model}.") client_model = "claude-3-5-sonnet-20240620" client = anthropic.Anthropic() elif args.model.startswith("bedrock") and "claude" in args.model: import anthropic # Expects: bedrock/ client_model = args.model.split("/")[-1] print(f"Using Amazon Bedrock with model {client_model}.") client = anthropic.AnthropicBedrock() elif args.model.startswith("vertex_ai") and "claude" in args.model: import anthropic # Expects: vertex_ai/ client_model = args.model.split("/")[-1] print(f"Using Vertex AI with model {client_model}.") client = anthropic.AnthropicVertex() elif args.model == "gpt-4o-2024-05-13": import openai print(f"Using OpenAI API with model {args.model}.") client_model = "gpt-4o-2024-05-13" client = openai.OpenAI() elif args.model == "deepseek-coder-v2-0724": import openai print(f"Using OpenAI API with {args.model}.") client_model = "deepseek-coder-v2-0724" client = openai.OpenAI( api_key=os.environ["DEEPSEEK_API_KEY"], base_url="https://api.deepseek.com" ) elif args.model == "llama3.1-405b": import openai print(f"Using OpenAI API with {args.model}.") client_model = "meta-llama/llama-3.1-405b-instruct" client = openai.OpenAI( api_key=os.environ["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1", ) else: raise ValueError(f"Model {args.model} not supported.") base_dir = osp.join("templates", args.experiment) results_dir = osp.join("results", args.experiment) idea_archive = [] if args.parallel > 0: print(f"Running {args.parallel} parallel processes") queue = multiprocessing.Queue() lock = multiprocessing.Lock() for _ in range(args.num_ideas): queue.put(_) processes = [] for i in range(args.parallel): gpu_id = available_gpus[i % len(available_gpus)] p = multiprocessing.Process( target=worker, args=( queue, base_dir, results_dir, args.model, client, client_model, args.writeup, args.improvement, gpu_id, idea_archive, lock, ), ) p.start() time.sleep(150) processes.append(p) # Signal workers to exit for _ in range(args.parallel): queue.put(None) for p in processes: p.join() print("All parallel processes completed.") else: for _ in range(args.num_ideas): idea_archive = generate_next_idea( base_dir, client=client, model=client_model, prev_idea_archive=idea_archive, num_reflections=NUM_REFLECTIONS, ) idea_archive = check_idea_novelty( idea_archive, base_dir=base_dir, client=client, model=client_model, ) idea = idea_archive[-1] print(f"Processing idea: {idea['Name']}") try: success, score, _ = do_idea( base_dir, results_dir, idea, args.model, client, client_model, args.writeup, args.improvement, ) print( f"Completed idea: {idea['Name']}, Success: {success}, Score: {score}" ) idea["Score"] = score except Exception as e: print(f"Failed to evaluate idea {idea['Name']}: {str(e)}") print("All ideas evaluated.")