\begin{thebibliography}{8} \providecommand{\natexlab}[1]{#1} \providecommand{\url}[1]{\texttt{#1}} \expandafter\ifx\csname urlstyle\endcsname\relax \providecommand{\doi}[1]{doi: #1}\else \providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi \bibitem[Goodfellow et~al.(2014)Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio]{gan} Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. \newblock Generative adversarial nets. \newblock In Z.~Ghahramani, M.~Welling, C.~Cortes, N.~Lawrence, and K.Q. Weinberger (eds.), \emph{Advances in Neural Information Processing Systems}, volume~27. Curran Associates, Inc., 2014. \newblock URL \url{https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf}. \bibitem[Goodfellow et~al.(2016)Goodfellow, Bengio, Courville, and Bengio]{goodfellow2016deep} Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. \newblock \emph{Deep learning}, volume~1. \newblock MIT Press, 2016. \bibitem[Ho et~al.(2020)Ho, Jain, and Abbeel]{ddpm} Jonathan Ho, Ajay Jain, and Pieter Abbeel. \newblock Denoising diffusion probabilistic models. \newblock In H.~Larochelle, M.~Ranzato, R.~Hadsell, M.F. Balcan, and H.~Lin (eds.), \emph{Advances in Neural Information Processing Systems}, volume~33, pp.\ 6840--6851. Curran Associates, Inc., 2020. \newblock URL \url{https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf}. \bibitem[Karras et~al.(2022)Karras, Aittala, Aila, and Laine]{edm} Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. \newblock Elucidating the design space of diffusion-based generative models. \newblock In Alice~H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), \emph{Advances in Neural Information Processing Systems}, 2022. \newblock URL \url{https://openreview.net/forum?id=k7FuTOWMOc7}. \bibitem[Kingma \& Welling(2014)Kingma and Welling]{vae} Diederik~P. Kingma and Max Welling. \newblock {Auto-Encoding Variational Bayes}. \newblock In \emph{2nd International Conference on Learning Representations, {ICLR} 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings}, 2014. \bibitem[Kotelnikov et~al.(2022)Kotelnikov, Baranchuk, Rubachev, and Babenko]{kotelnikov2022tabddpm} Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. \newblock Tabddpm: Modelling tabular data with diffusion models, 2022. \bibitem[Sohl-Dickstein et~al.(2015)Sohl-Dickstein, Weiss, Maheswaranathan, and Ganguli]{pmlr-v37-sohl-dickstein15} Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. \newblock Deep unsupervised learning using nonequilibrium thermodynamics. \newblock In Francis Bach and David Blei (eds.), \emph{Proceedings of the 32nd International Conference on Machine Learning}, volume~37 of \emph{Proceedings of Machine Learning Research}, pp.\ 2256--2265, Lille, France, 07--09 Jul 2015. PMLR. \bibitem[Yang et~al.(2023)Yang, Zhang, Song, Hong, Xu, Zhao, Zhang, Cui, and Yang]{yang2023diffusion} Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. \newblock Diffusion models: A comprehensive survey of methods and applications. \newblock \emph{ACM Computing Surveys}, 56\penalty0 (4):\penalty0 1--39, 2023. \end{thebibliography}