%% LaTeX2e file `references.bib' %% generated by the `filecontents' environment %% from source `template' on 2024/08/08. %% @book{goodfellow2016deep, title={Deep learning}, author={Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron and Bengio, Yoshua}, volume={1}, year={2016}, publisher={MIT Press} } @article{yang2023diffusion, title={Diffusion models: A comprehensive survey of methods and applications}, author={Yang, Ling and Zhang, Zhilong and Song, Yang and Hong, Shenda and Xu, Runsheng and Zhao, Yue and Zhang, Wentao and Cui, Bin and Yang, Ming-Hsuan}, journal={ACM Computing Surveys}, volume={56}, number={4}, pages={1--39}, year={2023}, publisher={ACM New York, NY, USA} } @inproceedings{ddpm, author = {Ho, Jonathan and Jain, Ajay and Abbeel, Pieter}, booktitle = {Advances in Neural Information Processing Systems}, editor = {H. Larochelle and M. Ranzato and R. Hadsell and M.F. Balcan and H. Lin}, pages = {6840--6851}, publisher = {Curran Associates, Inc.}, title = {Denoising Diffusion Probabilistic Models}, url = {https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf}, volume = {33}, year = {2020} } @inproceedings{vae, added-at = {2020-10-15T14:36:56.000+0200}, author = {Kingma, Diederik P. and Welling, Max}, biburl = {https://www.bibsonomy.org/bibtex/242e5be6faa01cba2587f4907ac99dce8/annakrause}, booktitle = {2nd International Conference on Learning Representations, {ICLR} 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings}, eprint = {http://arxiv.org/abs/1312.6114v10}, eprintclass = {stat.ML}, eprinttype = {arXiv}, file = {:http\://arxiv.org/pdf/1312.6114v10:PDF;:KingmaWelling_Auto-EncodingVariationalBayes.pdf:PDF}, interhash = {a626a9d77a123c52405a08da983203cb}, intrahash = {42e5be6faa01cba2587f4907ac99dce8}, keywords = {cs.LG stat.ML vae}, timestamp = {2021-02-01T17:13:18.000+0100}, title = {{Auto-Encoding Variational Bayes}}, year = 2014 } @inproceedings{gan, author = {Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua}, booktitle = {Advances in Neural Information Processing Systems}, editor = {Z. Ghahramani and M. Welling and C. Cortes and N. Lawrence and K.Q. Weinberger}, pages = {}, publisher = {Curran Associates, Inc.}, title = {Generative Adversarial Nets}, url = {https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf}, volume = {27}, year = {2014} } @InProceedings{pmlr-v37-sohl-dickstein15, title = {Deep Unsupervised Learning using Nonequilibrium Thermodynamics}, author = {Sohl-Dickstein, Jascha and Weiss, Eric and Maheswaranathan, Niru and Ganguli, Surya}, booktitle = {Proceedings of the 32nd International Conference on Machine Learning}, pages = {2256--2265}, year = {2015}, editor = {Bach, Francis and Blei, David}, volume = {37}, series = {Proceedings of Machine Learning Research}, address = {Lille, France}, month = {07--09 Jul}, publisher = {PMLR} } @inproceedings{ edm, title={Elucidating the Design Space of Diffusion-Based Generative Models}, author={Tero Karras and Miika Aittala and Timo Aila and Samuli Laine}, booktitle={Advances in Neural Information Processing Systems}, editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho}, year={2022}, url={https://openreview.net/forum?id=k7FuTOWMOc7} } @misc{kotelnikov2022tabddpm, title={TabDDPM: Modelling Tabular Data with Diffusion Models}, author={Akim Kotelnikov and Dmitry Baranchuk and Ivan Rubachev and Artem Babenko}, year={2022}, eprint={2209.15421}, archivePrefix={arXiv}, primaryClass={cs.LG} } @Article{Tiago2024ADT, author = {Cristiana Tiago and S. Snare and Jurica Šprem and K. Mcleod}, booktitle = {IEEE Access}, journal = {IEEE Access}, pages = {17594-17602}, title = {A Domain Translation Framework With an Adversarial Denoising Diffusion Model to Generate Synthetic Datasets of Echocardiography Images}, volume = {11}, year = {2024} } @Article{Gulrajani2017ImprovedTO, author = {Ishaan Gulrajani and Faruk Ahmed and Martín Arjovsky and Vincent Dumoulin and Aaron C. Courville}, booktitle = {Neural Information Processing Systems}, pages = {5767-5777}, title = {Improved Training of Wasserstein GANs}, year = {2017} } @Article{Song2020ScoreBasedGM, author = {Yang Song and Jascha Narain Sohl-Dickstein and Diederik P. Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole}, booktitle = {International Conference on Learning Representations}, journal = {ArXiv}, title = {Score-Based Generative Modeling through Stochastic Differential Equations}, volume = {abs/2011.13456}, year = {2020} }