--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: validation args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8188848188848189 --- # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2376 - F1: 0.8189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6997 | 1.0 | 70 | 0.3258 | 0.7623 | | 0.2884 | 2.0 | 140 | 0.2660 | 0.8037 | | 0.1775 | 3.0 | 210 | 0.2376 | 0.8189 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.10.1 - Tokenizers 0.13.3