VarunGumma
commited on
Commit
•
59feb3e
1
Parent(s):
62d68cb
Upload configuration_rotary_indictrans.py with huggingface_hub
Browse files
configuration_rotary_indictrans.py
CHANGED
@@ -1,28 +1,4 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" PyTorch IndicTrans config."""
|
16 |
-
|
17 |
-
import json
|
18 |
-
from collections import OrderedDict
|
19 |
-
from typing import Any, Mapping, Optional
|
20 |
-
|
21 |
-
from transformers import PreTrainedTokenizer
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
-
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
|
24 |
-
from transformers.onnx.utils import compute_effective_axis_dimension
|
25 |
-
from transformers.utils import TensorType, is_torch_available
|
26 |
|
27 |
|
28 |
# Copied from transformers.models.m2m_100.configuration_m2m_100.M2M100Config->IndicTrans
|
@@ -79,6 +55,7 @@ class RotaryIndicTransConfig(PretrainedConfig):
|
|
79 |
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
Whether or not the model should return the last key/values attentions (not used by all models).
|
81 |
```"""
|
|
|
82 |
model_type = "RotaryIndicTrans"
|
83 |
keys_to_ignore_at_inference = ["past_key_values"]
|
84 |
attribute_map = {
|
@@ -146,7 +123,7 @@ class RotaryIndicTransConfig(PretrainedConfig):
|
|
146 |
self.scale_embedding = scale_embedding
|
147 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
148 |
self.attn_implementation = attn_implementation
|
149 |
-
|
150 |
super().__init__(
|
151 |
pad_token_id=pad_token_id,
|
152 |
bos_token_id=bos_token_id,
|
@@ -155,153 +132,3 @@ class RotaryIndicTransConfig(PretrainedConfig):
|
|
155 |
decoder_start_token_id=decoder_start_token_id,
|
156 |
**kwargs,
|
157 |
)
|
158 |
-
|
159 |
-
|
160 |
-
class RotaryIndicTransOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
161 |
-
@property
|
162 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
163 |
-
common_inputs = OrderedDict(
|
164 |
-
[
|
165 |
-
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
166 |
-
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
167 |
-
]
|
168 |
-
)
|
169 |
-
|
170 |
-
if self.use_past:
|
171 |
-
common_inputs["decoder_input_ids"] = {0: "batch"}
|
172 |
-
common_inputs["decoder_attention_mask"] = {
|
173 |
-
0: "batch",
|
174 |
-
1: "past_decoder_sequence + sequence",
|
175 |
-
}
|
176 |
-
else:
|
177 |
-
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
178 |
-
common_inputs["decoder_attention_mask"] = {
|
179 |
-
0: "batch",
|
180 |
-
1: "decoder_sequence",
|
181 |
-
}
|
182 |
-
|
183 |
-
if self.use_past:
|
184 |
-
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
185 |
-
return common_inputs
|
186 |
-
|
187 |
-
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
|
188 |
-
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
|
189 |
-
# answering are not supported for IT2, but this name is preserved to be able to check that the copy matches what
|
190 |
-
# was done for BART so that it can be updated if need be.
|
191 |
-
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
192 |
-
self,
|
193 |
-
tokenizer: PreTrainedTokenizer,
|
194 |
-
batch_size: int = -1,
|
195 |
-
seq_length: int = -1,
|
196 |
-
is_pair: bool = False,
|
197 |
-
framework: Optional[TensorType] = None,
|
198 |
-
) -> Mapping[str, Any]:
|
199 |
-
# Copied from OnnxConfig.generate_dummy_inputs
|
200 |
-
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
201 |
-
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
202 |
-
batch_size = compute_effective_axis_dimension(
|
203 |
-
batch_size,
|
204 |
-
fixed_dimension=OnnxConfig.default_fixed_batch,
|
205 |
-
num_token_to_add=0,
|
206 |
-
)
|
207 |
-
|
208 |
-
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
209 |
-
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
210 |
-
seq_length = compute_effective_axis_dimension(
|
211 |
-
seq_length,
|
212 |
-
fixed_dimension=OnnxConfig.default_fixed_sequence,
|
213 |
-
num_token_to_add=token_to_add,
|
214 |
-
)
|
215 |
-
|
216 |
-
# Generate dummy inputs according to compute batch and sequence
|
217 |
-
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
218 |
-
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
219 |
-
return common_inputs
|
220 |
-
|
221 |
-
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
|
222 |
-
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
223 |
-
self,
|
224 |
-
tokenizer: PreTrainedTokenizer,
|
225 |
-
batch_size: int = -1,
|
226 |
-
seq_length: int = -1,
|
227 |
-
is_pair: bool = False,
|
228 |
-
framework: Optional[TensorType] = None,
|
229 |
-
) -> Mapping[str, Any]:
|
230 |
-
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
231 |
-
tokenizer, batch_size, seq_length, is_pair, framework
|
232 |
-
)
|
233 |
-
|
234 |
-
# Generate decoder inputs
|
235 |
-
decoder_seq_length = seq_length if not self.use_past else 1
|
236 |
-
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
237 |
-
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
238 |
-
)
|
239 |
-
decoder_inputs = {
|
240 |
-
f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()
|
241 |
-
}
|
242 |
-
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
243 |
-
|
244 |
-
if self.use_past:
|
245 |
-
if not is_torch_available():
|
246 |
-
raise ValueError(
|
247 |
-
"Cannot generate dummy past_keys inputs without PyTorch installed."
|
248 |
-
)
|
249 |
-
else:
|
250 |
-
import torch
|
251 |
-
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
252 |
-
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
253 |
-
(
|
254 |
-
num_encoder_attention_heads,
|
255 |
-
num_decoder_attention_heads,
|
256 |
-
) = self.num_attention_heads
|
257 |
-
encoder_shape = (
|
258 |
-
batch,
|
259 |
-
num_encoder_attention_heads,
|
260 |
-
encoder_seq_length,
|
261 |
-
self._config.hidden_size // num_encoder_attention_heads,
|
262 |
-
)
|
263 |
-
decoder_past_length = decoder_seq_length + 3
|
264 |
-
decoder_shape = (
|
265 |
-
batch,
|
266 |
-
num_decoder_attention_heads,
|
267 |
-
decoder_past_length,
|
268 |
-
self._config.hidden_size // num_decoder_attention_heads,
|
269 |
-
)
|
270 |
-
|
271 |
-
common_inputs["decoder_attention_mask"] = torch.cat(
|
272 |
-
[
|
273 |
-
common_inputs["decoder_attention_mask"],
|
274 |
-
torch.ones(batch, decoder_past_length),
|
275 |
-
],
|
276 |
-
dim=1,
|
277 |
-
)
|
278 |
-
|
279 |
-
common_inputs["past_key_values"] = []
|
280 |
-
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
281 |
-
num_encoder_layers, num_decoder_layers = self.num_layers
|
282 |
-
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
283 |
-
max_num_layers = (
|
284 |
-
max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
285 |
-
)
|
286 |
-
remaining_side_name = (
|
287 |
-
"encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
288 |
-
)
|
289 |
-
|
290 |
-
for _ in range(min_num_layers):
|
291 |
-
common_inputs["past_key_values"].append(
|
292 |
-
(
|
293 |
-
torch.zeros(decoder_shape),
|
294 |
-
torch.zeros(decoder_shape),
|
295 |
-
torch.zeros(encoder_shape),
|
296 |
-
torch.zeros(encoder_shape),
|
297 |
-
)
|
298 |
-
)
|
299 |
-
# TODO: test this.
|
300 |
-
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
301 |
-
for _ in range(min_num_layers, max_num_layers):
|
302 |
-
common_inputs["past_key_values"].append(
|
303 |
-
(torch.zeros(shape), torch.zeros(shape))
|
304 |
-
)
|
305 |
-
return common_inputs
|
306 |
-
|
307 |
-
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
# Copied from transformers.models.m2m_100.configuration_m2m_100.M2M100Config->IndicTrans
|
|
|
55 |
use_cache (`bool`, *optional*, defaults to `True`):
|
56 |
Whether or not the model should return the last key/values attentions (not used by all models).
|
57 |
```"""
|
58 |
+
|
59 |
model_type = "RotaryIndicTrans"
|
60 |
keys_to_ignore_at_inference = ["past_key_values"]
|
61 |
attribute_map = {
|
|
|
123 |
self.scale_embedding = scale_embedding
|
124 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
125 |
self.attn_implementation = attn_implementation
|
126 |
+
|
127 |
super().__init__(
|
128 |
pad_token_id=pad_token_id,
|
129 |
bos_token_id=bos_token_id,
|
|
|
132 |
decoder_start_token_id=decoder_start_token_id,
|
133 |
**kwargs,
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|