File size: 768 Bytes
639a33b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import os
import torch
from diffusers import FluxPipeline
from huggingface_hub import hf_hub_download

# Ensure 'output' folder exists, if not, create it
output_folder = './output/flux_8step'
os.makedirs(output_folder, exist_ok=True)

# Load base model
base_model_id = "trongg/Flux-Dev2Pro_nsfw_fluxtastic-v3"
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors"
pipe = FluxPipeline.from_pretrained(base_model_id)

# Load and fuse LoRA weights
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora(lora_scale=0.125)

# Unload LoRA to return the model to its original state
pipe.unload_lora_weights()

# Save the transformer model in 'output' folder
model = pipe.transformer
model.save_pretrained(output_folder)