import os import torch from diffusers import FluxPipeline from huggingface_hub import hf_hub_download # Ensure 'output' folder exists, if not, create it output_folder = './output/flux_8step' os.makedirs(output_folder, exist_ok=True) # Load base model base_model_id = "trongg/Flux-Dev2Pro_nsfw_fluxtastic-v3" repo_name = "ByteDance/Hyper-SD" ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" pipe = FluxPipeline.from_pretrained(base_model_id) # Load and fuse LoRA weights pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora(lora_scale=0.125) # Unload LoRA to return the model to its original state pipe.unload_lora_weights() # Save the transformer model in 'output' folder model = pipe.transformer model.save_pretrained(output_folder)