--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.82 +/- 22.28 name: mean_reward verified: false language: - en --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.evaluation import evaluate_policy from huggingface_sb3 import load_from_hub # Download the model checkpoint model_checkpoint = load_from_hub("prashanthgowni/ppo-LunarLander-v2", "ppo-LunarLander-v2") # Create a vectorized environment env = make_vec_env("LunarLander-v2", n_envs=1) # Load the model model = PPO.load(model_checkpoint, env=env) # Evaluate print("Evaluating model") mean_reward, std_reward = evaluate_policy( model, env, n_eval_episodes=30, deterministic=True, ) print(f"Mean reward = {mean_reward:.2f} +/- {std_reward}") # Start a new episode obs = env.reset() try: while True: action, state = model.predict(obs, deterministic=True) obs, reward, done, info = env.step(action) env.render() except KeyboardInterrupt: pass ```