--- library_name: peft tags: - generated_from_trainer base_model: prince-canuma/Llama-3-6B-v0.1 model-index: - name: llama-3-6b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: prince-canuma/Llama-3-6B-v0 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: prince-canuma/fineweb-CC-MAIN-2024-10-1B-en type: completion split: train dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: ./llama-3-6b save_safetensors: true adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: false pad_to_sequence_len: false lora_r: 128 lora_alpha: 128 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3-6b wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 2 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 eval_table_size: save_steps: 4000 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|reserved_special_token_0|>" ```

# llama-3-6b This model is a fine-tuned version of [prince-canuma/Llama-3-6B-v0.1](https://huggingface.co/prince-canuma/Llama-3-6B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.1562 | 0.0 | 1 | 7.1806 | | 2.7339 | 0.25 | 5867 | 2.6266 | | 2.6905 | 0.5 | 11734 | 2.5872 | | 2.6134 | 0.75 | 17601 | 2.5549 | | 2.532 | 1.0 | 23468 | 2.5235 | | 2.5319 | 1.25 | 29335 | 2.5067 | | 2.3336 | 1.5 | 35202 | 2.4968 | | 2.3486 | 1.75 | 41069 | 2.4942 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0