--- tags: - generated_from_trainer metrics: - accuracy widget: - text: SAMPLE 32,441 archived appendix samples fixed in formalin and embedded in paraffin and tested for the presence of abnormal prion protein (PrP). base_model: dmis-lab/biobert-base-cased-v1.1 model-index: - name: BioBert-PubMed200kRCT results: [] --- # BioBert-PubMed200kRCT This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the [PubMed200kRCT](https://github.com/Franck-Dernoncourt/pubmed-rct/tree/master/PubMed_200k_RCT) dataset. It achieves the following results on the evaluation set: - Loss: 0.2832 - Accuracy: 0.8934 ## Model description More information needed ## Intended uses & limitations The model can be used for text classification tasks of Randomized Controlled Trials that does not have any structure. The text can be classified as one of the following: * BACKGROUND * CONCLUSIONS * METHODS * OBJECTIVE * RESULTS The model can be directly used like this: ```python from transformers import TextClassificationPipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/BioBert-PubMed200kRCT") tokenizer = AutoTokenizer.from_pretrained("pritamdeka/BioBert-PubMed200kRCT") pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) pipe("Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity.") ``` Results will be shown as follows: ```python [[{'label': 'BACKGROUND', 'score': 0.0027583304326981306}, {'label': 'CONCLUSIONS', 'score': 0.044541116803884506}, {'label': 'METHODS', 'score': 0.19493348896503448}, {'label': 'OBJECTIVE', 'score': 0.003996663726866245}, {'label': 'RESULTS', 'score': 0.7537703514099121}]] ``` More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3587 | 0.14 | 5000 | 0.3137 | 0.8834 | | 0.3318 | 0.29 | 10000 | 0.3100 | 0.8831 | | 0.3286 | 0.43 | 15000 | 0.3033 | 0.8864 | | 0.3236 | 0.58 | 20000 | 0.3037 | 0.8862 | | 0.3182 | 0.72 | 25000 | 0.2939 | 0.8876 | | 0.3129 | 0.87 | 30000 | 0.2910 | 0.8885 | | 0.3078 | 1.01 | 35000 | 0.2914 | 0.8887 | | 0.2791 | 1.16 | 40000 | 0.2975 | 0.8874 | | 0.2723 | 1.3 | 45000 | 0.2913 | 0.8906 | | 0.2724 | 1.45 | 50000 | 0.2879 | 0.8904 | | 0.27 | 1.59 | 55000 | 0.2874 | 0.8911 | | 0.2681 | 1.74 | 60000 | 0.2848 | 0.8928 | | 0.2672 | 1.88 | 65000 | 0.2832 | 0.8934 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6 ## Citing & Authors If you use the model kindly cite the following work ``` @inproceedings{deka2022evidence, title={Evidence Extraction to Validate Medical Claims in Fake News Detection}, author={Deka, Pritam and Jurek-Loughrey, Anna and others}, booktitle={International Conference on Health Information Science}, pages={3--15}, year={2022}, organization={Springer} } ```