File size: 5,577 Bytes
7d85991 fc9f6b0 7d85991 fc9f6b0 04df596 fc9f6b0 044f677 fc9f6b0 7d85991 fc9f6b0 7af4931 fc9f6b0 5ef04bb fc9f6b0 5ef04bb fc9f6b0 5ef04bb 7b79d61 5ef04bb fc9f6b0 8732965 fc9f6b0 5ef04bb fc9f6b0 5ef04bb fc9f6b0 5ef04bb fc9f6b0 5ef04bb 98fc331 fc9f6b0 5ef04bb fc9f6b0 04df596 fc9f6b0 5ef04bb fc9f6b0 5ef04bb fc9f6b0 5ef04bb 08c62c6 5ef04bb fc9f6b0 96087d8 505af9b 96087d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
language:
- ca
license: apache-2.0
tags:
- "catalan"
- "text classification"
- "WikiCAT_ca"
- "CaText"
- "Catalan Textual Corpus"
datasets:
- "projecte-aina/WikiCAT_ca"
metrics:
- f1
model-index:
- name: roberta-base-ca-v2-cased-wikicat-ca
results:
- task:
type: text-classification
dataset:
type: projecte-aina/WikiCAT_ca
name: WikiCAT_ca
metrics:
- name: F1
type: f1
value: 77.823
widget:
- text: "La ressonància magnètica és una prova diagnòstica clau per a moltes malalties."
- text: "Les tres idees bàsiques del noümen són l'ànima, el món i Déu, i és una continuació de les tres substàncies de Descartes (tot i que el francès anomenava jo o ment l'ànima)."
---
# Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Viquipedia-based Text Classification.
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Variable and metrics](#variable-and-metrics)
- [Evaluation results](#evaluation-results)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Disclaimer](#disclaimer)
</details>
## Model description
The **roberta-base-ca-v2-cased-wikicat-ca** is a Text Classification model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
Dataset used is https://huggingface.co/datasets/projecte-aina/WikiCAT_ca, automatically created from Wikipedia and Wikidata sources
## Intended uses and limitations
**roberta-base-ca-v2-cased-wikicat-ca** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases.
## How to use
Here is how to use this model:
```python
from transformers import pipeline
from pprint import pprint
nlp = pipeline("text-classification", model="roberta-base-ca-v2-cased-wikicat-ca")
example = "La ressonància magnètica és una prova diagnòstica clau per a moltes malalties."
tc_results = nlp(example)
pprint(tc_results)
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Training
### Training data
We used the TC dataset in Catalan called [WikiCAT_ca](https://huggingface.co/datasets/projecte-aina/WikiCAT_ca) for training and evaluation.
### Training procedure
The model was trained with a batch size of 16 and three learning rates (1e-5, 3e-5, 5e-5) for 10 epochs. We then selected the best learning rate (3e-5) and checkpoint (epoch 3, step 1857) using the downstream task metric in the corresponding development set.
## Evaluation
### Variable and metrics
This model was finetuned maximizing F1 (weighted) score.
### Evaluation results
We evaluated the _roberta-base-ca-v2-cased-wikicat-ca_ on the WikiCAT_ca dev set:
| Model | WikiCAT_ca (F1)|
| ------------|:-------------|
| roberta-base-ca-v2-cased-wikicat-ca | 77.823 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
### Contact information
For further information, send an email to aina@bsc.es
### Copyright
Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
## Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|