File size: 1,739 Bytes
ab27d07
 
 
 
 
 
 
 
 
 
d8f3744
 
ab27d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340f1bf
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
language:
- en
inference: false
pipeline_tag: token-classification
tags:
- ner
license: mit
datasets:
- conll2003
base_model: dbmdz/bert-large-cased-finetuned-conll03-english

---

# ONNX version of dbmdz/bert-large-cased-finetuned-conll03-english

**This model is a conversion of [dbmdz/bert-large-cased-finetuned-conll03-english](https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.

`dbmdz/bert-large-cased-finetuned-conll03-english` is designed for named-entity recognition (NER), capable of finding person, organization, and other entities in the text.

## Usage

Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.

```python
from optimum.onnxruntime import ORTModelForTokenClassification
from transformers import AutoTokenizer, pipeline


tokenizer = AutoTokenizer.from_pretrained("laiyer/bert-large-cased-finetuned-conll03-english-onnx")
model = ORTModelForTokenClassification.from_pretrained("laiyer/bert-large-cased-finetuned-conll03-english-onnx")
ner = pipeline(
    task="ner",
    model=model,
    tokenizer=tokenizer,
)

ner_output = ner("My name is John Doe.")
print(ner_output)
```

### LLM Guard

[Anonymize scanner](https://llm-guard.com/input_scanners/anonymize/)

## Community

Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, 
or engage in discussions about LLM security!

<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w"><img src="https://github.com/laiyer-ai/llm-guard/blob/main/docs/assets/join-our-slack-community.png?raw=true" width="200"></a>