End of training
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- recall
|
9 |
+
- precision
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: deberta-v3-base-prompt-injection-v2-2024-04-20-16-52
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# deberta-v3-base-prompt-injection-v2-2024-04-20-16-52
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0036
|
24 |
+
- Accuracy: 0.9993
|
25 |
+
- Recall: 0.9994
|
26 |
+
- Precision: 0.9992
|
27 |
+
- F1: 0.9993
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 49994
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.06
|
53 |
+
- num_epochs: 3
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
60 |
+
| 0.0079 | 1.0 | 7711 | 0.0052 | 0.9988 | 0.9982 | 0.9994 | 0.9988 |
|
61 |
+
| 0.0026 | 2.0 | 15422 | 0.0052 | 0.9987 | 0.9988 | 0.9987 | 0.9988 |
|
62 |
+
| 0.0004 | 3.0 | 23133 | 0.0063 | 0.9990 | 0.9989 | 0.9992 | 0.9990 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.39.3
|
68 |
+
- Pytorch 2.2.2+cu121
|
69 |
+
- Datasets 2.18.0
|
70 |
+
- Tokenizers 0.15.2
|
deberta-v3-base-prompt-injection-v2_emissions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2024-04-21T01:05:57,deberta-v3-base-prompt-injection-v2_emissions,be24c49c-34fd-4330-8fae-045ee195f602,29613.912818193436,0.7573653175770764,2.557464534412304e-05,42.5,66.53002163649536,5.78702974319458,0.34960826874391937,1.6545413322431202,0.04758375938084103,2.051733360367884,United States,USA,virginia,,,Linux-5.10.213-201.855.amzn2.x86_64-x86_64-with-glibc2.26,3.10.9,2.3.5,4,AMD EPYC 7R32,1,1 x NVIDIA A10G,-77.2481,38.6583,15.432079315185547,machine,N,1.0
|