File size: 10,382 Bytes
da818b5 ae11a69 da818b5 ae11a69 79aaba1 ae11a69 3b0b6de da818b5 abbe749 79aaba1 abbe749 da818b5 abbe749 da818b5 abbe749 da818b5 abbe749 da818b5 ae11a69 3b0b6de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
---
language:
- en
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
base_model: pszemraj/Mistral-7B-v0.3-prune6
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
model-index:
- name: Mistral-v0.3-6B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 45.14
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.83
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.77
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.34
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 24.54
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 13.52
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.83
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.01
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.61
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.7
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
name: Open LLM Leaderboard
---
# Mistral-v0.3-6B
Brief continued pretraining @ ctx 4096 to 'heal' the layer-pruning.
## Model description
This model is a fine-tuned version of [pszemraj/Mistral-7B-v0.3-prune6](https://huggingface.co/pszemraj/Mistral-7B-v0.3-prune6) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2860
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: pszemraj/Mistral-7B-v0.3-prune6
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
strict: false
seed: 80085
max_steps: 2000
# dataset
datasets:
- path: BEE-spoke-data/knowledge-inoc-concat-v1
name: smorgasbord-tb-quality
type: completion
field: text
val_set_size: 0.01
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Mistral-6B-v0.3-v0.1-ii
hub_model_id: pszemraj/Mistral-v0.3-6B-ii
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
weight_decay: 0.1
lr_scheduler: cosine
learning_rate: 2e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true
flash_attention: true
torch_compile: true
torch_compile_backend: inductor
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 1
output_dir: /workspace/output-axolotl/output-model-6b
logging_steps: 6
deepspeed:
special_tokens:
```
</details><br>
## Quick eval
Quick eval for: pszemraj/Mistral-v0.3-6B-ii
bootstrapping for stddev: perplexity
hf (pretrained=pszemraj/Mistral-v0.3-6B-ii,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 2
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|--------------|------:|------|-----:|----------|-----:|---|-----:|
|arc_easy | 1|none | 0|acc |0.7109|± |0.0093|
| | |none | 0|acc_norm |0.6654|± |0.0097|
|boolq | 2|none | 0|acc |0.7930|± |0.0071|
|lambada_openai| 1|none | 0|perplexity|4.9892|± |0.1269|
| | |none | 0|acc |0.6746|± |0.0065|
|openbookqa | 1|none | 0|acc |0.2460|± |0.0193|
| | |none | 0|acc_norm |0.3700|± |0.0216|
|piqa | 1|none | 0|acc |0.7350|± |0.0103|
| | |none | 0|acc_norm |0.7350|± |0.0103|
|winogrande | 1|none | 0|acc |0.6930|± |0.0130|
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 1.5980 |
| 1.578 | 0.0955 | 400 | 1.4028 |
| 1.5828 | 0.1911 | 800 | 1.3809 |
| 1.4355 | 0.2866 | 1200 | 1.3152 |
| 1.4618 | 0.3822 | 1600 | 1.2877 |
| 1.4551 | 0.4777 | 2000 | 1.2860 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__Mistral-v0.3-6B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |49.23|
|AI2 Reasoning Challenge (25-Shot)|45.14|
|HellaSwag (10-Shot) |71.65|
|MMLU (5-Shot) |51.83|
|TruthfulQA (0-shot) |45.64|
|Winogrande (5-shot) |72.77|
|GSM8k (5-shot) | 8.34|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__Mistral-v0.3-6B)
| Metric |Value|
|-------------------|----:|
|Avg. |10.03|
|IFEval (0-Shot) |24.54|
|BBH (3-Shot) |13.52|
|MATH Lvl 5 (4-Shot)| 0.83|
|GPQA (0-shot) | 2.01|
|MuSR (0-shot) | 6.61|
|MMLU-PRO (5-shot) |12.70|
|