File size: 10,382 Bytes
da818b5
ae11a69
 
da818b5
 
 
 
ae11a69
79aaba1
 
ae11a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0b6de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da818b5
 
abbe749
79aaba1
 
 
abbe749
 
 
 
 
 
da818b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abbe749
da818b5
abbe749
da818b5
 
abbe749
 
 
 
 
 
 
 
 
 
 
 
 
 
da818b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae11a69
 
 
 
 
 
 
 
 
 
 
 
 
 
3b0b6de
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
---
language:
- en
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
base_model: pszemraj/Mistral-7B-v0.3-prune6
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
model-index:
- name: Mistral-v0.3-6B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 45.14
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 71.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 45.64
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.77
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 8.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 24.54
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 13.52
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.83
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.01
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.61
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 12.7
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Mistral-v0.3-6B
      name: Open LLM Leaderboard
---


# Mistral-v0.3-6B

Brief continued pretraining @ ctx 4096 to 'heal' the layer-pruning.

## Model description

This model is a fine-tuned version of [pszemraj/Mistral-7B-v0.3-prune6](https://huggingface.co/pszemraj/Mistral-7B-v0.3-prune6) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2860

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: pszemraj/Mistral-7B-v0.3-prune6
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

strict: false
seed: 80085
max_steps: 2000
# dataset
datasets:
    - path: BEE-spoke-data/knowledge-inoc-concat-v1
      name: smorgasbord-tb-quality
      type: completion 
      field: text 
val_set_size: 0.01

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false

# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Mistral-6B-v0.3-v0.1-ii
hub_model_id: pszemraj/Mistral-v0.3-6B-ii
hub_strategy: every_save

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
weight_decay: 0.1
lr_scheduler: cosine
learning_rate: 2e-5
warmup_ratio: 0.1

load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true

flash_attention: true
torch_compile: true 
torch_compile_backend: inductor 
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false

# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 1
output_dir: /workspace/output-axolotl/output-model-6b
logging_steps: 6

deepspeed:

special_tokens:

```

</details><br>

## Quick eval

Quick eval for:	pszemraj/Mistral-v0.3-6B-ii


bootstrapping for stddev: perplexity
hf (pretrained=pszemraj/Mistral-v0.3-6B-ii,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 2
|    Tasks     |Version|Filter|n-shot|  Metric  |Value |   |Stderr|
|--------------|------:|------|-----:|----------|-----:|---|-----:|
|arc_easy      |      1|none  |     0|acc       |0.7109|±  |0.0093|
|              |       |none  |     0|acc_norm  |0.6654|±  |0.0097|
|boolq         |      2|none  |     0|acc       |0.7930|±  |0.0071|
|lambada_openai|      1|none  |     0|perplexity|4.9892|±  |0.1269|
|              |       |none  |     0|acc       |0.6746|±  |0.0065|
|openbookqa    |      1|none  |     0|acc       |0.2460|±  |0.0193|
|              |       |none  |     0|acc_norm  |0.3700|±  |0.0216|
|piqa          |      1|none  |     0|acc       |0.7350|±  |0.0103|
|              |       |none  |     0|acc_norm  |0.7350|±  |0.0103|
|winogrande    |      1|none  |     0|acc       |0.6930|±  |0.0130|



## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- training_steps: 2000

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0002 | 1    | 1.5980          |
| 1.578         | 0.0955 | 400  | 1.4028          |
| 1.5828        | 0.1911 | 800  | 1.3809          |
| 1.4355        | 0.2866 | 1200 | 1.3152          |
| 1.4618        | 0.3822 | 1600 | 1.2877          |
| 1.4551        | 0.4777 | 2000 | 1.2860          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__Mistral-v0.3-6B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |49.23|
|AI2 Reasoning Challenge (25-Shot)|45.14|
|HellaSwag (10-Shot)              |71.65|
|MMLU (5-Shot)                    |51.83|
|TruthfulQA (0-shot)              |45.64|
|Winogrande (5-shot)              |72.77|
|GSM8k (5-shot)                   | 8.34|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__Mistral-v0.3-6B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |10.03|
|IFEval (0-Shot)    |24.54|
|BBH (3-Shot)       |13.52|
|MATH Lvl 5 (4-Shot)| 0.83|
|GPQA (0-shot)      | 2.01|
|MuSR (0-shot)      | 6.61|
|MMLU-PRO (5-shot)  |12.70|