File size: 3,277 Bytes
635278d 5fd509c 1dd6766 635278d 83f11b6 635278d 875c761 83f11b6 f669322 1805c93 83f11b6 37a1a79 83f11b6 635278d 83f11b6 635278d f1dd802 7b9d6f3 1dd6766 635278d 2a98d07 635278d 206f6de 770d173 206f6de 770d173 875c761 770d173 37a1a79 770d173 635278d 7b9d6f3 635278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
tags:
- generated_from_trainer
- stable diffusion
- diffusion
- text2image
- prompt augment
- prompt engineering
datasets:
- Gustavosta/Stable-Diffusion-Prompts
model-index:
- name: distilgpt2-magicprompt-SD
results: []
thumbnail: https://i.ibb.co/WkmTnZD/image.png
widget:
- text: "morning sun over Jakarta"
example_title: "morning sun"
- text: "WARNING: pip is"
example_title: "pip"
- text: "sentient cheese"
example_title: "sentient cheese"
- text: "cheeps are"
example_title: "cheeps"
- text: "avocado armchair"
example_title: "creative prompt"
- text: "Landscape of"
example_title: "landscape"
parameters:
min_length: 16
max_new_tokens: 24
no_repeat_ngram_size: 1
do_sample: True
---
# distilgpt2-magicprompt-SD
[![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/pszemraj/bdddf9c3fe92d1ac2654730016d64c80/demo-distilgpt2-magicprompt.ipynb)
Generate/augment your prompt, stable diffusion style.
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the Gustavosta/Stable-Diffusion-Prompts dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3089
- eval_steps_per_second = 17.201
- perplexity = 3.7022
## example
Results in (_DALL-E, but you get the idea_):
![example](https://i.ibb.co/WkmTnZD/image.png)
<br>
this `distilgpt2` version is probably small/fast enough to be used locally on CPU!
## basic usage
install transformers as needed:
```bash
pip install -U transformers
```
load and query through a `pipeline` object:
```python
from transformers import pipeline
model_tag = "pszemraj/distilgpt2-magicprompt-SD"
generator = pipeline(
"text-generation",
model=model_tag,
)
prompt = "The Answer to Why"
result = generator(
prompt,
max_new_tokens=24,
) # generate, adjust/add kwargs as needed
print(result[0]["generated_text"])
```
## Training and evaluation data
refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7061 | 0.99 | 33 | 2.5859 |
| 2.08 | 1.99 | 66 | 1.9965 |
| 1.7623 | 2.99 | 99 | 1.7248 |
| 1.5408 | 3.99 | 132 | 1.5449 |
| 1.4147 | 4.99 | 165 | 1.4437 |
| 1.3593 | 5.99 | 198 | 1.3768 |
| 1.2703 | 6.99 | 231 | 1.3362 |
| 1.2528 | 7.99 | 264 | 1.3175 |
| 1.1981 | 8.99 | 297 | 1.3091 |
| 1.2117 | 9.99 | 330 | 1.3089 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1
|