pszemraj commited on
Commit
59c01a5
1 Parent(s): 3dc5053

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -206,20 +206,6 @@ Exploring how well long-document models trained on "lay summaries" of scientific
206
 
207
  This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the `pszemraj/scientific_lay_summarisation-elife-norm` dataset.
208
 
209
- It achieves the following results on the evaluation set:
210
- - Loss: 1.9990
211
- - Rouge1: 38.5587
212
- - Rouge2: 9.7336
213
- - Rougel: 21.1974
214
- - Rougelsum: 35.9333
215
- - Gen Len: 392.7095
216
-
217
-
218
- ## Intended uses & limitations
219
-
220
- - Ability to generalize outside of the dataset domain (pubmed/bioscience type papers) has to be evaluated.
221
-
222
-
223
  ## Usage
224
 
225
  It's recommended to usage this model with [beam search decoding](https://huggingface.co/docs/transformers/generation_strategies#beamsearch-decoding). If interested, you can also use the `textsum` util repo to have most of this abstracted out for you:
@@ -239,12 +225,27 @@ summary = summarizer.summarize_string(text)
239
  print(summary)
240
  ```
241
 
 
 
 
 
242
  ## Training and evaluation data
243
 
244
  The `elife` subset of the :lay summaries dataset. Refer to `pszemraj/scientific_lay_summarisation-elife-norm`
245
 
246
  ## Training procedure
247
 
 
 
 
 
 
 
 
 
 
 
 
248
  ### Training hyperparameters
249
 
250
  The following hyperparameters were used during training:
 
206
 
207
  This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the `pszemraj/scientific_lay_summarisation-elife-norm` dataset.
208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
  ## Usage
210
 
211
  It's recommended to usage this model with [beam search decoding](https://huggingface.co/docs/transformers/generation_strategies#beamsearch-decoding). If interested, you can also use the `textsum` util repo to have most of this abstracted out for you:
 
225
  print(summary)
226
  ```
227
 
228
+ ## Intended uses & limitations
229
+
230
+ - Ability to generalize outside of the dataset domain (pubmed/bioscience type papers) has to be evaluated.
231
+
232
  ## Training and evaluation data
233
 
234
  The `elife` subset of the :lay summaries dataset. Refer to `pszemraj/scientific_lay_summarisation-elife-norm`
235
 
236
  ## Training procedure
237
 
238
+
239
+ ### Eval results
240
+
241
+ It achieves the following results on the evaluation set:
242
+ - Loss: 1.9990
243
+ - Rouge1: 38.5587
244
+ - Rouge2: 9.7336
245
+ - Rougel: 21.1974
246
+ - Rougelsum: 35.9333
247
+ - Gen Len: 392.7095
248
+
249
  ### Training hyperparameters
250
 
251
  The following hyperparameters were used during training: