|
--- |
|
license: apache-2.0 |
|
base_model: pszemraj/mega-small-2048-C1024-simplewiki-MR50-tk_ema32 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
datasets: |
|
- pszemraj/simple_wikipedia_LM |
|
- JeanKaddour/minipile |
|
pipeline_tag: fill-mask |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mega-small-2048-C1024-MR50-sw_minipile-tk_ema32 |
|
|
|
This model is a fine-tuned version of [pszemraj/mega-small-2048-C1024-simplewiki-MR50-tk_ema32](https://huggingface.co/pszemraj/mega-small-2048-C1024-simplewiki-MR50-tk_ema32) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.7559 |
|
- Accuracy: 0.4177 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 3208 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 5.0539 | 0.05 | 100 | 5.0404 | 0.2907 | |
|
| 4.8869 | 0.1 | 200 | 4.6659 | 0.3216 | |
|
| 4.6364 | 0.15 | 300 | 4.4565 | 0.3416 | |
|
| 4.8682 | 0.2 | 400 | 4.3119 | 0.3557 | |
|
| 4.3904 | 0.25 | 500 | 4.2410 | 0.3664 | |
|
| 4.3191 | 0.3 | 600 | 4.1880 | 0.3701 | |
|
| 4.5587 | 0.35 | 700 | 4.0996 | 0.3789 | |
|
| 4.1517 | 0.4 | 800 | 4.0724 | 0.3839 | |
|
| 4.1427 | 0.45 | 900 | 4.0177 | 0.3892 | |
|
| 3.8845 | 0.5 | 1000 | 3.9725 | 0.3928 | |
|
| 4.1478 | 0.55 | 1100 | 3.9080 | 0.4007 | |
|
| 4.0271 | 0.6 | 1200 | 3.8979 | 0.4002 | |
|
| 4.0132 | 0.65 | 1300 | 3.8647 | 0.4057 | |
|
| 3.7284 | 0.7 | 1400 | 3.8518 | 0.4063 | |
|
| 3.9346 | 0.75 | 1500 | 3.8178 | 0.4100 | |
|
| 4.0403 | 0.8 | 1600 | 3.8015 | 0.4126 | |
|
| 3.9726 | 0.85 | 1700 | 3.7916 | 0.4138 | |
|
| 3.8489 | 0.9 | 1800 | 3.7630 | 0.4162 | |
|
| 3.7117 | 0.95 | 1900 | 3.7745 | 0.4162 | |
|
| 3.654 | 1.0 | 2000 | 3.7559 | 0.4177 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.1.0.dev20230809+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |