--- license: apache-2.0 base_model: pszemraj/random-mega-small-2048 tags: - generated_from_trainer metrics: - accuracy datasets: - pszemraj/simple_wikipedia_LM pipeline_tag: fill-mask --- # mega-small-2048 on simple wikipedia [MEGA](https://arxiv.org/abs/2209.10655) for masked LM 'small' (12 layers, 512 hidden size, 2048 ctx in chunks of 1024) on the `pszemraj/simple_wikipedia_LM` dataset. It achieves the following results on the evaluation set: - Loss: 3.4773 - Accuracy: 0.4591 ## Model description See [config](https://huggingface.co/pszemraj/mega-small-2048-C1024-tk_id-simplewiki-MR50/blob/main/config.json) for architecture details. While not a ready 'pretrained' model, this was trained from scratch. This model uses the tokenizer from `roberta-base`. ## Intended uses & limitations More information needed ## Training and evaluation data > **Note:** this was trained in `bf16`. the [official recommendation](https://github.com/facebookresearch/mega#tips) is fp32 - still exploring this. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 1 - seed: 3208 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 Additionally: - mask rate of 50% (See [paper for details](https://arxiv.org/abs/2202.08005)) - whole-word masking ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.2691 | 0.11 | 50 | 7.1000 | 0.0677 | | 7.1597 | 0.22 | 100 | 6.8388 | 0.0794 | | 6.5476 | 0.33 | 150 | 6.4004 | 0.1359 | | 6.5335 | 0.44 | 200 | 6.1776 | 0.1708 | | 5.7228 | 0.55 | 250 | 5.6106 | 0.2437 | | 5.4574 | 0.66 | 300 | 5.1391 | 0.2884 | | 5.2275 | 0.78 | 350 | 4.8626 | 0.3174 | | 4.9589 | 0.89 | 400 | 4.6454 | 0.3374 | | 4.6406 | 1.0 | 450 | 4.4498 | 0.3578 | | 4.8251 | 1.11 | 500 | 4.3055 | 0.3706 | | 4.4728 | 1.22 | 550 | 4.1877 | 0.3821 | | 4.3975 | 1.33 | 600 | 4.0709 | 0.3955 | | 4.4245 | 1.44 | 650 | 3.9909 | 0.4045 | | 4.2613 | 1.55 | 700 | 3.8976 | 0.4128 | | 4.1806 | 1.66 | 750 | 3.8515 | 0.4177 | | 3.9469 | 1.77 | 800 | 3.7883 | 0.4227 | | 3.9563 | 1.88 | 850 | 3.7314 | 0.4306 | | 4.0063 | 1.99 | 900 | 3.6975 | 0.4336 | | 3.9274 | 2.1 | 950 | 3.6561 | 0.4378 | | 3.788 | 2.21 | 1000 | 3.6280 | 0.4410 | | 3.8711 | 2.33 | 1050 | 3.5736 | 0.4467 | | 3.8623 | 2.44 | 1100 | 3.5535 | 0.4496 | | 3.8575 | 2.55 | 1150 | 3.5407 | 0.4521 | | 4.0079 | 2.66 | 1200 | 3.5172 | 0.4543 | | 3.8265 | 2.77 | 1250 | 3.4786 | 0.4591 | | 3.9513 | 2.88 | 1300 | 3.4741 | 0.4578 | | 3.554 | 2.99 | 1350 | 3.4773 | 0.4591 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230907+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3