load model from drive and convert
Browse files- .gitignore +1 -0
- README.md +55 -0
- config.json +28 -0
- latest +1 -0
- merges.txt +0 -0
- opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8_training_metadata.json +1 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- trainer_state.json +2245 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +484 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) on the None dataset.
|
16 |
+
|
17 |
+
## Model description
|
18 |
+
|
19 |
+
More information needed
|
20 |
+
|
21 |
+
## Intended uses & limitations
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Training and evaluation data
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training procedure
|
30 |
+
|
31 |
+
### Training hyperparameters
|
32 |
+
|
33 |
+
The following hyperparameters were used during training:
|
34 |
+
- learning_rate: 4e-05
|
35 |
+
- train_batch_size: 8
|
36 |
+
- eval_batch_size: 8
|
37 |
+
- seed: 42
|
38 |
+
- distributed_type: multi-GPU
|
39 |
+
- gradient_accumulation_steps: 16
|
40 |
+
- total_train_batch_size: 128
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: cosine
|
43 |
+
- lr_scheduler_warmup_ratio: 0.01
|
44 |
+
- num_epochs: 3
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
### Framework versions
|
51 |
+
|
52 |
+
- Transformers 4.19.2
|
53 |
+
- Pytorch 1.10.0+cu113
|
54 |
+
- Datasets 2.2.2
|
55 |
+
- Tokenizers 0.12.1
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/opt-2.7b",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "relu",
|
5 |
+
"architectures": [
|
6 |
+
"OPTForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"do_layer_norm_before": true,
|
11 |
+
"dropout": 0.1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"ffn_dim": 10240,
|
14 |
+
"hidden_size": 2560,
|
15 |
+
"init_std": 0.02,
|
16 |
+
"layerdrop": 0.0,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "opt",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"prefix": "</s>",
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.19.2",
|
25 |
+
"use_cache": false,
|
26 |
+
"vocab_size": 50265,
|
27 |
+
"word_embed_proj_dim": 2560
|
28 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1852
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8_training_metadata.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"output_dir": "/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "overwrite_output_dir": true, "do_train": false, "do_eval": false, "do_predict": false, "evaluation_strategy": "no", "prediction_loss_only": false, "per_device_train_batch_size": 8, "per_device_eval_batch_size": 8, "per_gpu_train_batch_size": "None", "per_gpu_eval_batch_size": "None", "gradient_accumulation_steps": 16, "eval_accumulation_steps": 8, "eval_delay": 0, "learning_rate": 4e-05, "weight_decay": 0.1, "adam_beta1": 0.9, "adam_beta2": 0.999, "adam_epsilon": 1e-08, "max_grad_norm": 1, "num_train_epochs": 3, "max_steps": -1, "lr_scheduler_type": "cosine", "warmup_ratio": 0.01, "warmup_steps": 0, "log_level": -1, "log_level_replica": -1, "log_on_each_node": true, "logging_dir": "/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8/logs", "logging_strategy": "steps", "logging_first_step": false, "logging_steps": 5, "logging_nan_inf_filter": true, "save_strategy": "epoch", "save_steps": 500, "save_total_limit": 1, "save_on_each_node": false, "no_cuda": false, "seed": 42, "data_seed": "None", "bf16": true, "fp16": false, "fp16_opt_level": "O1", "half_precision_backend": "amp", "bf16_full_eval": true, "fp16_full_eval": false, "tf32": "None", "local_rank": 0, "xpu_backend": "None", "tpu_num_cores": "None", "tpu_metrics_debug": false, "debug": "[]", "dataloader_drop_last": false, "eval_steps": "None", "dataloader_num_workers": 0, "past_index": -1, "run_name": "/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "disable_tqdm": false, "remove_unused_columns": true, "label_names": "None", "load_best_model_at_end": false, "metric_for_best_model": "None", "greater_is_better": "None", "ignore_data_skip": false, "sharded_ddp": "[]", "fsdp": "[]", "fsdp_min_num_params": 0, "deepspeed": "ds_config_zero2_bf16.json", "label_smoothing_factor": 0.0, "optim": "adamw_hf", "adafactor": false, "group_by_length": false, "length_column_name": "length", "report_to": "['tensorboard']", "ddp_find_unused_parameters": "None", "ddp_bucket_cap_mb": "None", "dataloader_pin_memory": true, "skip_memory_metrics": true, "use_legacy_prediction_loop": false, "push_to_hub": true, "resume_from_checkpoint": "None", "hub_model_id": "opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "hub_strategy": "end", "hub_token": "<HUB_TOKEN>", "hub_private_repo": false, "gradient_checkpointing": true, "include_inputs_for_metrics": false, "fp16_backend": "auto", "push_to_hub_model_id": "None", "push_to_hub_organization": "None", "push_to_hub_token": "<PUSH_TO_HUB_TOKEN>", "_n_gpu": 1, "mp_parameters": "", "auto_find_batch_size": false, "full_determinism": false, "train_batch_size": 8, "eval_batch_size": 8, "configs_src": "opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "data_tag": "text-file-input"}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69aff7264edf04861c8f3b6eed3f553e343af5ee8aebeb5ad1635f39ad2b4683
|
3 |
+
size 10606359699
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "</s>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_bos_token": true, "special_tokens_map_file": null, "name_or_path": "facebook/opt-2.7b", "model_max_length": 512, "tokenizer_class": "GPT2Tokenizer"}
|
trainer_state.json
ADDED
@@ -0,0 +1,2245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9985838559579205,
|
5 |
+
"global_step": 1851,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 1.0526315789473684e-05,
|
13 |
+
"loss": 11.5,
|
14 |
+
"step": 5
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.02,
|
18 |
+
"learning_rate": 2.105263157894737e-05,
|
19 |
+
"loss": 6.7393,
|
20 |
+
"step": 10
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.02,
|
24 |
+
"learning_rate": 3.157894736842106e-05,
|
25 |
+
"loss": 3.7191,
|
26 |
+
"step": 15
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.03,
|
30 |
+
"learning_rate": 3.999997059313686e-05,
|
31 |
+
"loss": 3.1877,
|
32 |
+
"step": 20
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.04,
|
36 |
+
"learning_rate": 3.999894136200706e-05,
|
37 |
+
"loss": 2.9055,
|
38 |
+
"step": 25
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.05,
|
42 |
+
"learning_rate": 3.9996441874195635e-05,
|
43 |
+
"loss": 2.9141,
|
44 |
+
"step": 30
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06,
|
48 |
+
"learning_rate": 3.999247231345674e-05,
|
49 |
+
"loss": 2.7834,
|
50 |
+
"step": 35
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.06,
|
54 |
+
"learning_rate": 3.998703297161948e-05,
|
55 |
+
"loss": 2.7901,
|
56 |
+
"step": 40
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.07,
|
60 |
+
"learning_rate": 3.9980124248566466e-05,
|
61 |
+
"loss": 2.8676,
|
62 |
+
"step": 45
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.08,
|
66 |
+
"learning_rate": 3.9971746652204386e-05,
|
67 |
+
"loss": 2.6787,
|
68 |
+
"step": 50
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.09,
|
72 |
+
"learning_rate": 3.996190079842669e-05,
|
73 |
+
"loss": 2.704,
|
74 |
+
"step": 55
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.1,
|
78 |
+
"learning_rate": 3.995058741106831e-05,
|
79 |
+
"loss": 2.6286,
|
80 |
+
"step": 60
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.11,
|
84 |
+
"learning_rate": 3.993780732185244e-05,
|
85 |
+
"loss": 2.6983,
|
86 |
+
"step": 65
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.11,
|
90 |
+
"learning_rate": 3.992356147032939e-05,
|
91 |
+
"loss": 2.6522,
|
92 |
+
"step": 70
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.12,
|
96 |
+
"learning_rate": 3.9907850903807514e-05,
|
97 |
+
"loss": 2.6293,
|
98 |
+
"step": 75
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.13,
|
102 |
+
"learning_rate": 3.989067677727622e-05,
|
103 |
+
"loss": 2.5399,
|
104 |
+
"step": 80
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.14,
|
108 |
+
"learning_rate": 3.987204035332105e-05,
|
109 |
+
"loss": 2.6687,
|
110 |
+
"step": 85
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.15,
|
114 |
+
"learning_rate": 3.985194300203087e-05,
|
115 |
+
"loss": 2.6291,
|
116 |
+
"step": 90
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.15,
|
120 |
+
"learning_rate": 3.983038620089714e-05,
|
121 |
+
"loss": 2.6533,
|
122 |
+
"step": 95
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.16,
|
126 |
+
"learning_rate": 3.980737153470528e-05,
|
127 |
+
"loss": 2.5923,
|
128 |
+
"step": 100
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.17,
|
132 |
+
"learning_rate": 3.97829006954182e-05,
|
133 |
+
"loss": 2.5941,
|
134 |
+
"step": 105
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.18,
|
138 |
+
"learning_rate": 3.9756975482051855e-05,
|
139 |
+
"loss": 2.6612,
|
140 |
+
"step": 110
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.19,
|
144 |
+
"learning_rate": 3.972959780054306e-05,
|
145 |
+
"loss": 2.6058,
|
146 |
+
"step": 115
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.19,
|
150 |
+
"learning_rate": 3.9700769663609304e-05,
|
151 |
+
"loss": 2.5226,
|
152 |
+
"step": 120
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.2,
|
156 |
+
"learning_rate": 3.967049319060081e-05,
|
157 |
+
"loss": 2.5573,
|
158 |
+
"step": 125
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.21,
|
162 |
+
"learning_rate": 3.963877060734473e-05,
|
163 |
+
"loss": 2.603,
|
164 |
+
"step": 130
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.22,
|
168 |
+
"learning_rate": 3.9605604245981515e-05,
|
169 |
+
"loss": 2.6506,
|
170 |
+
"step": 135
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.23,
|
174 |
+
"learning_rate": 3.9570996544793445e-05,
|
175 |
+
"loss": 2.631,
|
176 |
+
"step": 140
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.23,
|
180 |
+
"learning_rate": 3.9534950048025396e-05,
|
181 |
+
"loss": 2.5668,
|
182 |
+
"step": 145
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.24,
|
186 |
+
"learning_rate": 3.9497467405697756e-05,
|
187 |
+
"loss": 2.6354,
|
188 |
+
"step": 150
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.25,
|
192 |
+
"learning_rate": 3.9458551373411664e-05,
|
193 |
+
"loss": 2.5427,
|
194 |
+
"step": 155
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.26,
|
198 |
+
"learning_rate": 3.941820481214637e-05,
|
199 |
+
"loss": 2.5586,
|
200 |
+
"step": 160
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.27,
|
204 |
+
"learning_rate": 3.937643068804896e-05,
|
205 |
+
"loss": 2.5577,
|
206 |
+
"step": 165
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.28,
|
210 |
+
"learning_rate": 3.933323207221624e-05,
|
211 |
+
"loss": 2.5664,
|
212 |
+
"step": 170
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.28,
|
216 |
+
"learning_rate": 3.9288612140468984e-05,
|
217 |
+
"loss": 2.5396,
|
218 |
+
"step": 175
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.29,
|
222 |
+
"learning_rate": 3.924257417311846e-05,
|
223 |
+
"loss": 2.5558,
|
224 |
+
"step": 180
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.3,
|
228 |
+
"learning_rate": 3.919512155472529e-05,
|
229 |
+
"loss": 2.5306,
|
230 |
+
"step": 185
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.31,
|
234 |
+
"learning_rate": 3.9146257773850585e-05,
|
235 |
+
"loss": 2.4945,
|
236 |
+
"step": 190
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.32,
|
240 |
+
"learning_rate": 3.9095986422799506e-05,
|
241 |
+
"loss": 2.6086,
|
242 |
+
"step": 195
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.32,
|
246 |
+
"learning_rate": 3.904431119735718e-05,
|
247 |
+
"loss": 2.4973,
|
248 |
+
"step": 200
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.33,
|
252 |
+
"learning_rate": 3.899123589651695e-05,
|
253 |
+
"loss": 2.5872,
|
254 |
+
"step": 205
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.34,
|
258 |
+
"learning_rate": 3.893676442220114e-05,
|
259 |
+
"loss": 2.5216,
|
260 |
+
"step": 210
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.35,
|
264 |
+
"learning_rate": 3.888090077897418e-05,
|
265 |
+
"loss": 2.5367,
|
266 |
+
"step": 215
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.36,
|
270 |
+
"learning_rate": 3.882364907374819e-05,
|
271 |
+
"loss": 2.5495,
|
272 |
+
"step": 220
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.36,
|
276 |
+
"learning_rate": 3.8765013515481065e-05,
|
277 |
+
"loss": 2.6037,
|
278 |
+
"step": 225
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.37,
|
282 |
+
"learning_rate": 3.870499841486705e-05,
|
283 |
+
"loss": 2.5012,
|
284 |
+
"step": 230
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.38,
|
288 |
+
"learning_rate": 3.864360818401982e-05,
|
289 |
+
"loss": 2.4773,
|
290 |
+
"step": 235
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.39,
|
294 |
+
"learning_rate": 3.8580847336148105e-05,
|
295 |
+
"loss": 2.52,
|
296 |
+
"step": 240
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.4,
|
300 |
+
"learning_rate": 3.851672048522395e-05,
|
301 |
+
"loss": 2.4718,
|
302 |
+
"step": 245
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.4,
|
306 |
+
"learning_rate": 3.845123234564343e-05,
|
307 |
+
"loss": 2.5251,
|
308 |
+
"step": 250
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.41,
|
312 |
+
"learning_rate": 3.838438773188014e-05,
|
313 |
+
"loss": 2.5547,
|
314 |
+
"step": 255
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.42,
|
318 |
+
"learning_rate": 3.831619155813119e-05,
|
319 |
+
"loss": 2.475,
|
320 |
+
"step": 260
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.43,
|
324 |
+
"learning_rate": 3.8246648837955965e-05,
|
325 |
+
"loss": 2.4957,
|
326 |
+
"step": 265
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.44,
|
330 |
+
"learning_rate": 3.817576468390753e-05,
|
331 |
+
"loss": 2.5425,
|
332 |
+
"step": 270
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.45,
|
336 |
+
"learning_rate": 3.810354430715678e-05,
|
337 |
+
"loss": 2.5495,
|
338 |
+
"step": 275
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.45,
|
342 |
+
"learning_rate": 3.802999301710932e-05,
|
343 |
+
"loss": 2.5375,
|
344 |
+
"step": 280
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.46,
|
348 |
+
"learning_rate": 3.795511622101516e-05,
|
349 |
+
"loss": 2.5151,
|
350 |
+
"step": 285
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.47,
|
354 |
+
"learning_rate": 3.787891942357115e-05,
|
355 |
+
"loss": 2.4864,
|
356 |
+
"step": 290
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.48,
|
360 |
+
"learning_rate": 3.780140822651633e-05,
|
361 |
+
"loss": 2.5396,
|
362 |
+
"step": 295
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.49,
|
366 |
+
"learning_rate": 3.77225883282201e-05,
|
367 |
+
"loss": 2.5585,
|
368 |
+
"step": 300
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.49,
|
372 |
+
"learning_rate": 3.764246552326328e-05,
|
373 |
+
"loss": 2.4947,
|
374 |
+
"step": 305
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.5,
|
378 |
+
"learning_rate": 3.756104570201213e-05,
|
379 |
+
"loss": 2.5004,
|
380 |
+
"step": 310
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.51,
|
384 |
+
"learning_rate": 3.747833485018529e-05,
|
385 |
+
"loss": 2.4729,
|
386 |
+
"step": 315
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.52,
|
390 |
+
"learning_rate": 3.739433904841375e-05,
|
391 |
+
"loss": 2.4764,
|
392 |
+
"step": 320
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.53,
|
396 |
+
"learning_rate": 3.7309064471793794e-05,
|
397 |
+
"loss": 2.5369,
|
398 |
+
"step": 325
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.53,
|
402 |
+
"learning_rate": 3.7222517389433085e-05,
|
403 |
+
"loss": 2.4836,
|
404 |
+
"step": 330
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.54,
|
408 |
+
"learning_rate": 3.7134704163989705e-05,
|
409 |
+
"loss": 2.4558,
|
410 |
+
"step": 335
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.55,
|
414 |
+
"learning_rate": 3.7045631251204434e-05,
|
415 |
+
"loss": 2.5562,
|
416 |
+
"step": 340
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.56,
|
420 |
+
"learning_rate": 3.6955305199426164e-05,
|
421 |
+
"loss": 2.4603,
|
422 |
+
"step": 345
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.57,
|
426 |
+
"learning_rate": 3.6863732649130426e-05,
|
427 |
+
"loss": 2.4176,
|
428 |
+
"step": 350
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.57,
|
432 |
+
"learning_rate": 3.677092033243128e-05,
|
433 |
+
"loss": 2.4991,
|
434 |
+
"step": 355
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.58,
|
438 |
+
"learning_rate": 3.667687507258631e-05,
|
439 |
+
"loss": 2.4846,
|
440 |
+
"step": 360
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.59,
|
444 |
+
"learning_rate": 3.658160378349508e-05,
|
445 |
+
"loss": 2.5998,
|
446 |
+
"step": 365
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.6,
|
450 |
+
"learning_rate": 3.648511346919079e-05,
|
451 |
+
"loss": 2.5061,
|
452 |
+
"step": 370
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.61,
|
456 |
+
"learning_rate": 3.638741122332539e-05,
|
457 |
+
"loss": 2.4538,
|
458 |
+
"step": 375
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.62,
|
462 |
+
"learning_rate": 3.628850422864807e-05,
|
463 |
+
"loss": 2.498,
|
464 |
+
"step": 380
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.62,
|
468 |
+
"learning_rate": 3.618839975647718e-05,
|
469 |
+
"loss": 2.4867,
|
470 |
+
"step": 385
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.63,
|
474 |
+
"learning_rate": 3.608710516616575e-05,
|
475 |
+
"loss": 2.5426,
|
476 |
+
"step": 390
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.64,
|
480 |
+
"learning_rate": 3.598462790456035e-05,
|
481 |
+
"loss": 2.4842,
|
482 |
+
"step": 395
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.65,
|
486 |
+
"learning_rate": 3.588097550545368e-05,
|
487 |
+
"loss": 2.4274,
|
488 |
+
"step": 400
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.66,
|
492 |
+
"learning_rate": 3.5776155589030725e-05,
|
493 |
+
"loss": 2.5354,
|
494 |
+
"step": 405
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.66,
|
498 |
+
"learning_rate": 3.5670175861308496e-05,
|
499 |
+
"loss": 2.455,
|
500 |
+
"step": 410
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.67,
|
504 |
+
"learning_rate": 3.556304411356954e-05,
|
505 |
+
"loss": 2.5039,
|
506 |
+
"step": 415
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.68,
|
510 |
+
"learning_rate": 3.545476822178915e-05,
|
511 |
+
"loss": 2.518,
|
512 |
+
"step": 420
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.69,
|
516 |
+
"learning_rate": 3.5345356146056326e-05,
|
517 |
+
"loss": 2.4718,
|
518 |
+
"step": 425
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.7,
|
522 |
+
"learning_rate": 3.52348159299886e-05,
|
523 |
+
"loss": 2.4318,
|
524 |
+
"step": 430
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.7,
|
528 |
+
"learning_rate": 3.512315570014071e-05,
|
529 |
+
"loss": 2.5146,
|
530 |
+
"step": 435
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.71,
|
534 |
+
"learning_rate": 3.50103836654071e-05,
|
535 |
+
"loss": 2.4801,
|
536 |
+
"step": 440
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.72,
|
540 |
+
"learning_rate": 3.489650811641849e-05,
|
541 |
+
"loss": 2.4429,
|
542 |
+
"step": 445
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.73,
|
546 |
+
"learning_rate": 3.478153742493235e-05,
|
547 |
+
"loss": 2.4654,
|
548 |
+
"step": 450
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.74,
|
552 |
+
"learning_rate": 3.4665480043217444e-05,
|
553 |
+
"loss": 2.4846,
|
554 |
+
"step": 455
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.74,
|
558 |
+
"learning_rate": 3.454834450343245e-05,
|
559 |
+
"loss": 2.4371,
|
560 |
+
"step": 460
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.75,
|
564 |
+
"learning_rate": 3.443013941699868e-05,
|
565 |
+
"loss": 2.4071,
|
566 |
+
"step": 465
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.76,
|
570 |
+
"learning_rate": 3.431087347396702e-05,
|
571 |
+
"loss": 2.3886,
|
572 |
+
"step": 470
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.77,
|
576 |
+
"learning_rate": 3.419055544237906e-05,
|
577 |
+
"loss": 2.4539,
|
578 |
+
"step": 475
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.78,
|
582 |
+
"learning_rate": 3.40691941676225e-05,
|
583 |
+
"loss": 2.4406,
|
584 |
+
"step": 480
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.78,
|
588 |
+
"learning_rate": 3.394679857178086e-05,
|
589 |
+
"loss": 2.3687,
|
590 |
+
"step": 485
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.79,
|
594 |
+
"learning_rate": 3.382337765297756e-05,
|
595 |
+
"loss": 2.4244,
|
596 |
+
"step": 490
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.8,
|
600 |
+
"learning_rate": 3.3698940484714394e-05,
|
601 |
+
"loss": 2.4477,
|
602 |
+
"step": 495
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.81,
|
606 |
+
"learning_rate": 3.35734962152045e-05,
|
607 |
+
"loss": 2.5432,
|
608 |
+
"step": 500
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.82,
|
612 |
+
"learning_rate": 3.34470540666998e-05,
|
613 |
+
"loss": 2.4633,
|
614 |
+
"step": 505
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.83,
|
618 |
+
"learning_rate": 3.331962333481302e-05,
|
619 |
+
"loss": 2.4302,
|
620 |
+
"step": 510
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.83,
|
624 |
+
"learning_rate": 3.319121338783428e-05,
|
625 |
+
"loss": 2.4528,
|
626 |
+
"step": 515
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.84,
|
630 |
+
"learning_rate": 3.3061833666042416e-05,
|
631 |
+
"loss": 2.3741,
|
632 |
+
"step": 520
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.85,
|
636 |
+
"learning_rate": 3.29314936810109e-05,
|
637 |
+
"loss": 2.4638,
|
638 |
+
"step": 525
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.86,
|
642 |
+
"learning_rate": 3.280020301490863e-05,
|
643 |
+
"loss": 2.4204,
|
644 |
+
"step": 530
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.87,
|
648 |
+
"learning_rate": 3.2667971319795473e-05,
|
649 |
+
"loss": 2.436,
|
650 |
+
"step": 535
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.87,
|
654 |
+
"learning_rate": 3.253480831691264e-05,
|
655 |
+
"loss": 2.4194,
|
656 |
+
"step": 540
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.88,
|
660 |
+
"learning_rate": 3.240072379596806e-05,
|
661 |
+
"loss": 2.3565,
|
662 |
+
"step": 545
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.89,
|
666 |
+
"learning_rate": 3.226572761441666e-05,
|
667 |
+
"loss": 2.4421,
|
668 |
+
"step": 550
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.9,
|
672 |
+
"learning_rate": 3.2129829696735636e-05,
|
673 |
+
"loss": 2.4169,
|
674 |
+
"step": 555
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.91,
|
678 |
+
"learning_rate": 3.1993040033694916e-05,
|
679 |
+
"loss": 2.4425,
|
680 |
+
"step": 560
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.91,
|
684 |
+
"learning_rate": 3.1855368681622584e-05,
|
685 |
+
"loss": 2.399,
|
686 |
+
"step": 565
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.92,
|
690 |
+
"learning_rate": 3.171682576166565e-05,
|
691 |
+
"loss": 2.3747,
|
692 |
+
"step": 570
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.93,
|
696 |
+
"learning_rate": 3.1577421459045905e-05,
|
697 |
+
"loss": 2.437,
|
698 |
+
"step": 575
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.94,
|
702 |
+
"learning_rate": 3.143716602231122e-05,
|
703 |
+
"loss": 2.4131,
|
704 |
+
"step": 580
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.95,
|
708 |
+
"learning_rate": 3.129606976258201e-05,
|
709 |
+
"loss": 2.4329,
|
710 |
+
"step": 585
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.95,
|
714 |
+
"learning_rate": 3.115414305279327e-05,
|
715 |
+
"loss": 2.4521,
|
716 |
+
"step": 590
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.96,
|
720 |
+
"learning_rate": 3.101139632693197e-05,
|
721 |
+
"loss": 2.3317,
|
722 |
+
"step": 595
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.97,
|
726 |
+
"learning_rate": 3.086784007926996e-05,
|
727 |
+
"loss": 2.4119,
|
728 |
+
"step": 600
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.98,
|
732 |
+
"learning_rate": 3.072348486359247e-05,
|
733 |
+
"loss": 2.4315,
|
734 |
+
"step": 605
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.99,
|
738 |
+
"learning_rate": 3.0578341292422286e-05,
|
739 |
+
"loss": 2.4687,
|
740 |
+
"step": 610
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 1.0,
|
744 |
+
"learning_rate": 3.043242003623947e-05,
|
745 |
+
"loss": 2.4703,
|
746 |
+
"step": 615
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 1.0,
|
750 |
+
"learning_rate": 3.0285731822696954e-05,
|
751 |
+
"loss": 2.5997,
|
752 |
+
"step": 620
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 1.01,
|
756 |
+
"learning_rate": 3.0138287435831855e-05,
|
757 |
+
"loss": 2.0103,
|
758 |
+
"step": 625
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.02,
|
762 |
+
"learning_rate": 2.9990097715272694e-05,
|
763 |
+
"loss": 1.9907,
|
764 |
+
"step": 630
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 1.03,
|
768 |
+
"learning_rate": 2.9841173555442463e-05,
|
769 |
+
"loss": 1.9292,
|
770 |
+
"step": 635
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.04,
|
774 |
+
"learning_rate": 2.9691525904757745e-05,
|
775 |
+
"loss": 1.9898,
|
776 |
+
"step": 640
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 1.05,
|
780 |
+
"learning_rate": 2.954116576482378e-05,
|
781 |
+
"loss": 1.9234,
|
782 |
+
"step": 645
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 1.05,
|
786 |
+
"learning_rate": 2.9390104189625702e-05,
|
787 |
+
"loss": 1.8726,
|
788 |
+
"step": 650
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 1.06,
|
792 |
+
"learning_rate": 2.923835228471587e-05,
|
793 |
+
"loss": 1.9208,
|
794 |
+
"step": 655
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 1.07,
|
798 |
+
"learning_rate": 2.90859212063974e-05,
|
799 |
+
"loss": 1.9407,
|
800 |
+
"step": 660
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.08,
|
804 |
+
"learning_rate": 2.8932822160904038e-05,
|
805 |
+
"loss": 1.9377,
|
806 |
+
"step": 665
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 1.09,
|
810 |
+
"learning_rate": 2.877906640357628e-05,
|
811 |
+
"loss": 1.9665,
|
812 |
+
"step": 670
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.09,
|
816 |
+
"learning_rate": 2.862466523803393e-05,
|
817 |
+
"loss": 1.9723,
|
818 |
+
"step": 675
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 1.1,
|
822 |
+
"learning_rate": 2.846963001534507e-05,
|
823 |
+
"loss": 1.9876,
|
824 |
+
"step": 680
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 1.11,
|
828 |
+
"learning_rate": 2.8313972133191615e-05,
|
829 |
+
"loss": 1.9405,
|
830 |
+
"step": 685
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 1.12,
|
834 |
+
"learning_rate": 2.8157703035031353e-05,
|
835 |
+
"loss": 1.9848,
|
836 |
+
"step": 690
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 1.13,
|
840 |
+
"learning_rate": 2.8000834209256665e-05,
|
841 |
+
"loss": 1.9328,
|
842 |
+
"step": 695
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.13,
|
846 |
+
"learning_rate": 2.7843377188349962e-05,
|
847 |
+
"loss": 1.9343,
|
848 |
+
"step": 700
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.14,
|
852 |
+
"learning_rate": 2.768534354803581e-05,
|
853 |
+
"loss": 1.9245,
|
854 |
+
"step": 705
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 1.15,
|
858 |
+
"learning_rate": 2.752674490642996e-05,
|
859 |
+
"loss": 1.9526,
|
860 |
+
"step": 710
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 1.16,
|
864 |
+
"learning_rate": 2.7367592923185207e-05,
|
865 |
+
"loss": 1.93,
|
866 |
+
"step": 715
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.17,
|
870 |
+
"learning_rate": 2.720789929863421e-05,
|
871 |
+
"loss": 1.9263,
|
872 |
+
"step": 720
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 1.17,
|
876 |
+
"learning_rate": 2.7047675772929328e-05,
|
877 |
+
"loss": 1.9432,
|
878 |
+
"step": 725
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 1.18,
|
882 |
+
"learning_rate": 2.6886934125179504e-05,
|
883 |
+
"loss": 1.9481,
|
884 |
+
"step": 730
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.19,
|
888 |
+
"learning_rate": 2.672568617258432e-05,
|
889 |
+
"loss": 1.909,
|
890 |
+
"step": 735
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 1.2,
|
894 |
+
"learning_rate": 2.6563943769565258e-05,
|
895 |
+
"loss": 1.9386,
|
896 |
+
"step": 740
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 1.21,
|
900 |
+
"learning_rate": 2.6401718806894144e-05,
|
901 |
+
"loss": 1.9362,
|
902 |
+
"step": 745
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 1.22,
|
906 |
+
"learning_rate": 2.6239023210819027e-05,
|
907 |
+
"loss": 1.9494,
|
908 |
+
"step": 750
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1.22,
|
912 |
+
"learning_rate": 2.6075868942187366e-05,
|
913 |
+
"loss": 1.9576,
|
914 |
+
"step": 755
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 1.23,
|
918 |
+
"learning_rate": 2.5912267995566746e-05,
|
919 |
+
"loss": 1.937,
|
920 |
+
"step": 760
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 1.24,
|
924 |
+
"learning_rate": 2.5748232398363044e-05,
|
925 |
+
"loss": 1.9889,
|
926 |
+
"step": 765
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.25,
|
930 |
+
"learning_rate": 2.5583774209936218e-05,
|
931 |
+
"loss": 1.9285,
|
932 |
+
"step": 770
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.26,
|
936 |
+
"learning_rate": 2.5418905520713767e-05,
|
937 |
+
"loss": 1.895,
|
938 |
+
"step": 775
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 1.26,
|
942 |
+
"learning_rate": 2.525363845130185e-05,
|
943 |
+
"loss": 1.9826,
|
944 |
+
"step": 780
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1.27,
|
948 |
+
"learning_rate": 2.5087985151594235e-05,
|
949 |
+
"loss": 1.9869,
|
950 |
+
"step": 785
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1.28,
|
954 |
+
"learning_rate": 2.4921957799879076e-05,
|
955 |
+
"loss": 1.9325,
|
956 |
+
"step": 790
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 1.29,
|
960 |
+
"learning_rate": 2.4755568601943615e-05,
|
961 |
+
"loss": 1.9479,
|
962 |
+
"step": 795
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 1.3,
|
966 |
+
"learning_rate": 2.4588829790176837e-05,
|
967 |
+
"loss": 1.9616,
|
968 |
+
"step": 800
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.3,
|
972 |
+
"learning_rate": 2.4421753622670178e-05,
|
973 |
+
"loss": 1.9706,
|
974 |
+
"step": 805
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.31,
|
978 |
+
"learning_rate": 2.425435238231638e-05,
|
979 |
+
"loss": 1.9675,
|
980 |
+
"step": 810
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 1.32,
|
984 |
+
"learning_rate": 2.4086638375906484e-05,
|
985 |
+
"loss": 1.9684,
|
986 |
+
"step": 815
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1.33,
|
990 |
+
"learning_rate": 2.3918623933225043e-05,
|
991 |
+
"loss": 1.9388,
|
992 |
+
"step": 820
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1.34,
|
996 |
+
"learning_rate": 2.375032140614372e-05,
|
997 |
+
"loss": 1.9326,
|
998 |
+
"step": 825
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 1.34,
|
1002 |
+
"learning_rate": 2.3581743167713187e-05,
|
1003 |
+
"loss": 1.9521,
|
1004 |
+
"step": 830
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.35,
|
1008 |
+
"learning_rate": 2.3412901611253524e-05,
|
1009 |
+
"loss": 1.9704,
|
1010 |
+
"step": 835
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.36,
|
1014 |
+
"learning_rate": 2.3243809149443077e-05,
|
1015 |
+
"loss": 1.89,
|
1016 |
+
"step": 840
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.37,
|
1020 |
+
"learning_rate": 2.3074478213405937e-05,
|
1021 |
+
"loss": 1.9438,
|
1022 |
+
"step": 845
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1.38,
|
1026 |
+
"learning_rate": 2.2904921251798052e-05,
|
1027 |
+
"loss": 1.9682,
|
1028 |
+
"step": 850
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.39,
|
1032 |
+
"learning_rate": 2.2735150729892013e-05,
|
1033 |
+
"loss": 2.008,
|
1034 |
+
"step": 855
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.39,
|
1038 |
+
"learning_rate": 2.2565179128660667e-05,
|
1039 |
+
"loss": 1.9247,
|
1040 |
+
"step": 860
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1.4,
|
1044 |
+
"learning_rate": 2.2395018943859558e-05,
|
1045 |
+
"loss": 1.9377,
|
1046 |
+
"step": 865
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1.41,
|
1050 |
+
"learning_rate": 2.222468268510828e-05,
|
1051 |
+
"loss": 1.9396,
|
1052 |
+
"step": 870
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.42,
|
1056 |
+
"learning_rate": 2.2054182874970808e-05,
|
1057 |
+
"loss": 1.9848,
|
1058 |
+
"step": 875
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.43,
|
1062 |
+
"learning_rate": 2.188353204803486e-05,
|
1063 |
+
"loss": 1.9382,
|
1064 |
+
"step": 880
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1.43,
|
1068 |
+
"learning_rate": 2.1712742749990444e-05,
|
1069 |
+
"loss": 1.9431,
|
1070 |
+
"step": 885
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1.44,
|
1074 |
+
"learning_rate": 2.154182753670749e-05,
|
1075 |
+
"loss": 1.9833,
|
1076 |
+
"step": 890
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1.45,
|
1080 |
+
"learning_rate": 2.1370798973312813e-05,
|
1081 |
+
"loss": 1.9338,
|
1082 |
+
"step": 895
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1.46,
|
1086 |
+
"learning_rate": 2.1199669633266353e-05,
|
1087 |
+
"loss": 1.9543,
|
1088 |
+
"step": 900
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1.47,
|
1092 |
+
"learning_rate": 2.102845209743682e-05,
|
1093 |
+
"loss": 1.9455,
|
1094 |
+
"step": 905
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.47,
|
1098 |
+
"learning_rate": 2.085715895317679e-05,
|
1099 |
+
"loss": 1.9533,
|
1100 |
+
"step": 910
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1.48,
|
1104 |
+
"learning_rate": 2.0685802793397317e-05,
|
1105 |
+
"loss": 2.0128,
|
1106 |
+
"step": 915
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 1.49,
|
1110 |
+
"learning_rate": 2.051439621564216e-05,
|
1111 |
+
"loss": 1.9471,
|
1112 |
+
"step": 920
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1.5,
|
1116 |
+
"learning_rate": 2.0342951821161648e-05,
|
1117 |
+
"loss": 1.9474,
|
1118 |
+
"step": 925
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1.51,
|
1122 |
+
"learning_rate": 2.017148221398625e-05,
|
1123 |
+
"loss": 1.9946,
|
1124 |
+
"step": 930
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 1.51,
|
1128 |
+
"learning_rate": 2e-05,
|
1129 |
+
"loss": 1.913,
|
1130 |
+
"step": 935
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1.52,
|
1134 |
+
"learning_rate": 1.9828517786013752e-05,
|
1135 |
+
"loss": 1.981,
|
1136 |
+
"step": 940
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.53,
|
1140 |
+
"learning_rate": 1.965704817883836e-05,
|
1141 |
+
"loss": 1.9809,
|
1142 |
+
"step": 945
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1.54,
|
1146 |
+
"learning_rate": 1.948560378435784e-05,
|
1147 |
+
"loss": 1.9793,
|
1148 |
+
"step": 950
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 1.55,
|
1152 |
+
"learning_rate": 1.9314197206602693e-05,
|
1153 |
+
"loss": 1.9207,
|
1154 |
+
"step": 955
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1.56,
|
1158 |
+
"learning_rate": 1.914284104682322e-05,
|
1159 |
+
"loss": 1.8926,
|
1160 |
+
"step": 960
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1.56,
|
1164 |
+
"learning_rate": 1.897154790256319e-05,
|
1165 |
+
"loss": 2.0005,
|
1166 |
+
"step": 965
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 1.57,
|
1170 |
+
"learning_rate": 1.8800330366733654e-05,
|
1171 |
+
"loss": 1.9432,
|
1172 |
+
"step": 970
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.58,
|
1176 |
+
"learning_rate": 1.862920102668719e-05,
|
1177 |
+
"loss": 1.8667,
|
1178 |
+
"step": 975
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.59,
|
1182 |
+
"learning_rate": 1.8458172463292516e-05,
|
1183 |
+
"loss": 1.9405,
|
1184 |
+
"step": 980
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 1.6,
|
1188 |
+
"learning_rate": 1.828725725000956e-05,
|
1189 |
+
"loss": 1.9617,
|
1190 |
+
"step": 985
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 1.6,
|
1194 |
+
"learning_rate": 1.8116467951965145e-05,
|
1195 |
+
"loss": 1.9447,
|
1196 |
+
"step": 990
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.61,
|
1200 |
+
"learning_rate": 1.79458171250292e-05,
|
1201 |
+
"loss": 1.9093,
|
1202 |
+
"step": 995
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.62,
|
1206 |
+
"learning_rate": 1.7775317314891724e-05,
|
1207 |
+
"loss": 1.9051,
|
1208 |
+
"step": 1000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 1.63,
|
1212 |
+
"learning_rate": 1.7604981056140446e-05,
|
1213 |
+
"loss": 1.916,
|
1214 |
+
"step": 1005
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.64,
|
1218 |
+
"learning_rate": 1.7434820871339336e-05,
|
1219 |
+
"loss": 1.8569,
|
1220 |
+
"step": 1010
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.64,
|
1224 |
+
"learning_rate": 1.7264849270107994e-05,
|
1225 |
+
"loss": 1.9163,
|
1226 |
+
"step": 1015
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 1.65,
|
1230 |
+
"learning_rate": 1.709507874820195e-05,
|
1231 |
+
"loss": 1.9342,
|
1232 |
+
"step": 1020
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 1.66,
|
1236 |
+
"learning_rate": 1.6925521786594067e-05,
|
1237 |
+
"loss": 1.8947,
|
1238 |
+
"step": 1025
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.67,
|
1242 |
+
"learning_rate": 1.675619085055693e-05,
|
1243 |
+
"loss": 1.9396,
|
1244 |
+
"step": 1030
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.68,
|
1248 |
+
"learning_rate": 1.6587098388746486e-05,
|
1249 |
+
"loss": 1.9416,
|
1250 |
+
"step": 1035
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 1.68,
|
1254 |
+
"learning_rate": 1.6418256832286816e-05,
|
1255 |
+
"loss": 1.9382,
|
1256 |
+
"step": 1040
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.69,
|
1260 |
+
"learning_rate": 1.6249678593856288e-05,
|
1261 |
+
"loss": 1.9747,
|
1262 |
+
"step": 1045
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.7,
|
1266 |
+
"learning_rate": 1.6081376066774964e-05,
|
1267 |
+
"loss": 1.8799,
|
1268 |
+
"step": 1050
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 1.71,
|
1272 |
+
"learning_rate": 1.591336162409352e-05,
|
1273 |
+
"loss": 1.8957,
|
1274 |
+
"step": 1055
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.72,
|
1278 |
+
"learning_rate": 1.5745647617683627e-05,
|
1279 |
+
"loss": 1.8921,
|
1280 |
+
"step": 1060
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 1.73,
|
1284 |
+
"learning_rate": 1.557824637732983e-05,
|
1285 |
+
"loss": 1.9406,
|
1286 |
+
"step": 1065
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.73,
|
1290 |
+
"learning_rate": 1.5411170209823177e-05,
|
1291 |
+
"loss": 1.9282,
|
1292 |
+
"step": 1070
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 1.74,
|
1296 |
+
"learning_rate": 1.5244431398056392e-05,
|
1297 |
+
"loss": 1.8621,
|
1298 |
+
"step": 1075
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.75,
|
1302 |
+
"learning_rate": 1.5078042200120933e-05,
|
1303 |
+
"loss": 1.9375,
|
1304 |
+
"step": 1080
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.76,
|
1308 |
+
"learning_rate": 1.4912014848405771e-05,
|
1309 |
+
"loss": 1.8779,
|
1310 |
+
"step": 1085
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 1.77,
|
1314 |
+
"learning_rate": 1.4746361548698151e-05,
|
1315 |
+
"loss": 1.9353,
|
1316 |
+
"step": 1090
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 1.77,
|
1320 |
+
"learning_rate": 1.4581094479286234e-05,
|
1321 |
+
"loss": 1.9255,
|
1322 |
+
"step": 1095
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 1.78,
|
1326 |
+
"learning_rate": 1.4416225790063784e-05,
|
1327 |
+
"loss": 1.9163,
|
1328 |
+
"step": 1100
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.79,
|
1332 |
+
"learning_rate": 1.4251767601636965e-05,
|
1333 |
+
"loss": 1.9314,
|
1334 |
+
"step": 1105
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 1.8,
|
1338 |
+
"learning_rate": 1.4087732004433258e-05,
|
1339 |
+
"loss": 1.8751,
|
1340 |
+
"step": 1110
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.81,
|
1344 |
+
"learning_rate": 1.3924131057812642e-05,
|
1345 |
+
"loss": 1.8934,
|
1346 |
+
"step": 1115
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.81,
|
1350 |
+
"learning_rate": 1.376097678918098e-05,
|
1351 |
+
"loss": 1.9148,
|
1352 |
+
"step": 1120
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 1.82,
|
1356 |
+
"learning_rate": 1.3598281193105858e-05,
|
1357 |
+
"loss": 1.8754,
|
1358 |
+
"step": 1125
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.83,
|
1362 |
+
"learning_rate": 1.3436056230434747e-05,
|
1363 |
+
"loss": 1.9183,
|
1364 |
+
"step": 1130
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 1.84,
|
1368 |
+
"learning_rate": 1.3274313827415678e-05,
|
1369 |
+
"loss": 1.9236,
|
1370 |
+
"step": 1135
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.85,
|
1374 |
+
"learning_rate": 1.3113065874820506e-05,
|
1375 |
+
"loss": 1.889,
|
1376 |
+
"step": 1140
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 1.85,
|
1380 |
+
"learning_rate": 1.295232422707068e-05,
|
1381 |
+
"loss": 1.8898,
|
1382 |
+
"step": 1145
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.86,
|
1386 |
+
"learning_rate": 1.2792100701365794e-05,
|
1387 |
+
"loss": 1.8991,
|
1388 |
+
"step": 1150
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.87,
|
1392 |
+
"learning_rate": 1.2632407076814794e-05,
|
1393 |
+
"loss": 1.9559,
|
1394 |
+
"step": 1155
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.88,
|
1398 |
+
"learning_rate": 1.2473255093570039e-05,
|
1399 |
+
"loss": 1.9048,
|
1400 |
+
"step": 1160
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.89,
|
1404 |
+
"learning_rate": 1.2314656451964196e-05,
|
1405 |
+
"loss": 1.859,
|
1406 |
+
"step": 1165
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.9,
|
1410 |
+
"learning_rate": 1.2156622811650043e-05,
|
1411 |
+
"loss": 1.8825,
|
1412 |
+
"step": 1170
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.9,
|
1416 |
+
"learning_rate": 1.1999165790743338e-05,
|
1417 |
+
"loss": 1.9094,
|
1418 |
+
"step": 1175
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 1.91,
|
1422 |
+
"learning_rate": 1.1842296964968652e-05,
|
1423 |
+
"loss": 1.937,
|
1424 |
+
"step": 1180
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.92,
|
1428 |
+
"learning_rate": 1.1686027866808394e-05,
|
1429 |
+
"loss": 1.8838,
|
1430 |
+
"step": 1185
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.93,
|
1434 |
+
"learning_rate": 1.1530369984654936e-05,
|
1435 |
+
"loss": 1.9023,
|
1436 |
+
"step": 1190
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 1.94,
|
1440 |
+
"learning_rate": 1.1375334761966074e-05,
|
1441 |
+
"loss": 1.9099,
|
1442 |
+
"step": 1195
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.94,
|
1446 |
+
"learning_rate": 1.122093359642372e-05,
|
1447 |
+
"loss": 1.9058,
|
1448 |
+
"step": 1200
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 1.95,
|
1452 |
+
"learning_rate": 1.1067177839095957e-05,
|
1453 |
+
"loss": 1.9359,
|
1454 |
+
"step": 1205
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 1.96,
|
1458 |
+
"learning_rate": 1.0914078793602601e-05,
|
1459 |
+
"loss": 1.8897,
|
1460 |
+
"step": 1210
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 1.97,
|
1464 |
+
"learning_rate": 1.0761647715284139e-05,
|
1465 |
+
"loss": 1.9341,
|
1466 |
+
"step": 1215
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.98,
|
1470 |
+
"learning_rate": 1.0609895810374304e-05,
|
1471 |
+
"loss": 1.876,
|
1472 |
+
"step": 1220
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.98,
|
1476 |
+
"learning_rate": 1.0458834235176225e-05,
|
1477 |
+
"loss": 1.8287,
|
1478 |
+
"step": 1225
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.99,
|
1482 |
+
"learning_rate": 1.0308474095242267e-05,
|
1483 |
+
"loss": 1.8523,
|
1484 |
+
"step": 1230
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 2.0,
|
1488 |
+
"learning_rate": 1.0128983382202781e-05,
|
1489 |
+
"loss": 2.0887,
|
1490 |
+
"step": 1235
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 2.01,
|
1494 |
+
"learning_rate": 9.980205236069665e-06,
|
1495 |
+
"loss": 1.4855,
|
1496 |
+
"step": 1240
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 2.02,
|
1500 |
+
"learning_rate": 9.832163712437392e-06,
|
1501 |
+
"loss": 1.4915,
|
1502 |
+
"step": 1245
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 2.03,
|
1506 |
+
"learning_rate": 9.684869694834003e-06,
|
1507 |
+
"loss": 1.4679,
|
1508 |
+
"step": 1250
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 2.03,
|
1512 |
+
"learning_rate": 9.538334011833363e-06,
|
1513 |
+
"loss": 1.4298,
|
1514 |
+
"step": 1255
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.04,
|
1518 |
+
"learning_rate": 9.392567436259034e-06,
|
1519 |
+
"loss": 1.4018,
|
1520 |
+
"step": 1260
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 2.05,
|
1524 |
+
"learning_rate": 9.247580684392345e-06,
|
1525 |
+
"loss": 1.4642,
|
1526 |
+
"step": 1265
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 2.06,
|
1530 |
+
"learning_rate": 9.10338441518453e-06,
|
1531 |
+
"loss": 1.4434,
|
1532 |
+
"step": 1270
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 2.07,
|
1536 |
+
"learning_rate": 8.959989229473125e-06,
|
1537 |
+
"loss": 1.4574,
|
1538 |
+
"step": 1275
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 2.07,
|
1542 |
+
"learning_rate": 8.817405669202619e-06,
|
1543 |
+
"loss": 1.4256,
|
1544 |
+
"step": 1280
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 2.08,
|
1548 |
+
"learning_rate": 8.675644216649478e-06,
|
1549 |
+
"loss": 1.4539,
|
1550 |
+
"step": 1285
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 2.09,
|
1554 |
+
"learning_rate": 8.534715293651492e-06,
|
1555 |
+
"loss": 1.5016,
|
1556 |
+
"step": 1290
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.1,
|
1560 |
+
"learning_rate": 8.39462926084159e-06,
|
1561 |
+
"loss": 1.4738,
|
1562 |
+
"step": 1295
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 2.11,
|
1566 |
+
"learning_rate": 8.255396416886194e-06,
|
1567 |
+
"loss": 1.4265,
|
1568 |
+
"step": 1300
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 2.11,
|
1572 |
+
"learning_rate": 8.117026997728079e-06,
|
1573 |
+
"loss": 1.4235,
|
1574 |
+
"step": 1305
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 2.12,
|
1578 |
+
"learning_rate": 7.979531175833828e-06,
|
1579 |
+
"loss": 1.5084,
|
1580 |
+
"step": 1310
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 2.13,
|
1584 |
+
"learning_rate": 7.842919059446046e-06,
|
1585 |
+
"loss": 1.4426,
|
1586 |
+
"step": 1315
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 2.14,
|
1590 |
+
"learning_rate": 7.707200691840173e-06,
|
1591 |
+
"loss": 1.4797,
|
1592 |
+
"step": 1320
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 2.15,
|
1596 |
+
"learning_rate": 7.572386050586196e-06,
|
1597 |
+
"loss": 1.4309,
|
1598 |
+
"step": 1325
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.16,
|
1602 |
+
"learning_rate": 7.438485046815078e-06,
|
1603 |
+
"loss": 1.4505,
|
1604 |
+
"step": 1330
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 2.16,
|
1608 |
+
"learning_rate": 7.305507524490145e-06,
|
1609 |
+
"loss": 1.4734,
|
1610 |
+
"step": 1335
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 2.17,
|
1614 |
+
"learning_rate": 7.1734632596834106e-06,
|
1615 |
+
"loss": 1.397,
|
1616 |
+
"step": 1340
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 2.18,
|
1620 |
+
"learning_rate": 7.042361959856825e-06,
|
1621 |
+
"loss": 1.4341,
|
1622 |
+
"step": 1345
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 2.19,
|
1626 |
+
"learning_rate": 6.912213263148673e-06,
|
1627 |
+
"loss": 1.4599,
|
1628 |
+
"step": 1350
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 2.2,
|
1632 |
+
"learning_rate": 6.783026737664942e-06,
|
1633 |
+
"loss": 1.4466,
|
1634 |
+
"step": 1355
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 2.2,
|
1638 |
+
"learning_rate": 6.654811880775973e-06,
|
1639 |
+
"loss": 1.4435,
|
1640 |
+
"step": 1360
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.21,
|
1644 |
+
"learning_rate": 6.527578118418187e-06,
|
1645 |
+
"loss": 1.4597,
|
1646 |
+
"step": 1365
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 2.22,
|
1650 |
+
"learning_rate": 6.401334804401171e-06,
|
1651 |
+
"loss": 1.4217,
|
1652 |
+
"step": 1370
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 2.23,
|
1656 |
+
"learning_rate": 6.276091219719984e-06,
|
1657 |
+
"loss": 1.4477,
|
1658 |
+
"step": 1375
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 2.24,
|
1662 |
+
"learning_rate": 6.151856571872854e-06,
|
1663 |
+
"loss": 1.4716,
|
1664 |
+
"step": 1380
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 2.24,
|
1668 |
+
"learning_rate": 6.028639994184277e-06,
|
1669 |
+
"loss": 1.4398,
|
1670 |
+
"step": 1385
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 2.25,
|
1674 |
+
"learning_rate": 5.906450545133564e-06,
|
1675 |
+
"loss": 1.4442,
|
1676 |
+
"step": 1390
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 2.26,
|
1680 |
+
"learning_rate": 5.785297207688905e-06,
|
1681 |
+
"loss": 1.4506,
|
1682 |
+
"step": 1395
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.27,
|
1686 |
+
"learning_rate": 5.665188888646935e-06,
|
1687 |
+
"loss": 1.4123,
|
1688 |
+
"step": 1400
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 2.28,
|
1692 |
+
"learning_rate": 5.546134417977984e-06,
|
1693 |
+
"loss": 1.456,
|
1694 |
+
"step": 1405
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 2.28,
|
1698 |
+
"learning_rate": 5.428142548176876e-06,
|
1699 |
+
"loss": 1.4274,
|
1700 |
+
"step": 1410
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 2.29,
|
1704 |
+
"learning_rate": 5.311221953619514e-06,
|
1705 |
+
"loss": 1.4062,
|
1706 |
+
"step": 1415
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 2.3,
|
1710 |
+
"learning_rate": 5.195381229925156e-06,
|
1711 |
+
"loss": 1.427,
|
1712 |
+
"step": 1420
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 2.31,
|
1716 |
+
"learning_rate": 5.080628893324475e-06,
|
1717 |
+
"loss": 1.4783,
|
1718 |
+
"step": 1425
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 2.32,
|
1722 |
+
"learning_rate": 4.9669733800334955e-06,
|
1723 |
+
"loss": 1.4356,
|
1724 |
+
"step": 1430
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.33,
|
1728 |
+
"learning_rate": 4.854423045633392e-06,
|
1729 |
+
"loss": 1.4809,
|
1730 |
+
"step": 1435
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 2.33,
|
1734 |
+
"learning_rate": 4.742986164456196e-06,
|
1735 |
+
"loss": 1.4079,
|
1736 |
+
"step": 1440
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 2.34,
|
1740 |
+
"learning_rate": 4.632670928976501e-06,
|
1741 |
+
"loss": 1.4884,
|
1742 |
+
"step": 1445
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 2.35,
|
1746 |
+
"learning_rate": 4.523485449209195e-06,
|
1747 |
+
"loss": 1.4499,
|
1748 |
+
"step": 1450
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 2.36,
|
1752 |
+
"learning_rate": 4.415437752113223e-06,
|
1753 |
+
"loss": 1.4065,
|
1754 |
+
"step": 1455
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 2.37,
|
1758 |
+
"learning_rate": 4.308535781001457e-06,
|
1759 |
+
"loss": 1.4888,
|
1760 |
+
"step": 1460
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 2.37,
|
1764 |
+
"learning_rate": 4.202787394956769e-06,
|
1765 |
+
"loss": 1.4707,
|
1766 |
+
"step": 1465
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.38,
|
1770 |
+
"learning_rate": 4.0982003682542146e-06,
|
1771 |
+
"loss": 1.4426,
|
1772 |
+
"step": 1470
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 2.39,
|
1776 |
+
"learning_rate": 3.994782389789535e-06,
|
1777 |
+
"loss": 1.3991,
|
1778 |
+
"step": 1475
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 2.4,
|
1782 |
+
"learning_rate": 3.892541062513853e-06,
|
1783 |
+
"loss": 1.4187,
|
1784 |
+
"step": 1480
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 2.41,
|
1788 |
+
"learning_rate": 3.7914839028747507e-06,
|
1789 |
+
"loss": 1.4248,
|
1790 |
+
"step": 1485
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 2.41,
|
1794 |
+
"learning_rate": 3.691618340263701e-06,
|
1795 |
+
"loss": 1.447,
|
1796 |
+
"step": 1490
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 2.42,
|
1800 |
+
"learning_rate": 3.5929517164698436e-06,
|
1801 |
+
"loss": 1.4394,
|
1802 |
+
"step": 1495
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 2.43,
|
1806 |
+
"learning_rate": 3.495491285140282e-06,
|
1807 |
+
"loss": 1.4359,
|
1808 |
+
"step": 1500
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.44,
|
1812 |
+
"learning_rate": 3.399244211246779e-06,
|
1813 |
+
"loss": 1.4752,
|
1814 |
+
"step": 1505
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 2.45,
|
1818 |
+
"learning_rate": 3.304217570559052e-06,
|
1819 |
+
"loss": 1.4508,
|
1820 |
+
"step": 1510
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 2.45,
|
1824 |
+
"learning_rate": 3.2104183491245466e-06,
|
1825 |
+
"loss": 1.4718,
|
1826 |
+
"step": 1515
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 2.46,
|
1830 |
+
"learning_rate": 3.117853442754879e-06,
|
1831 |
+
"loss": 1.4514,
|
1832 |
+
"step": 1520
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 2.47,
|
1836 |
+
"learning_rate": 3.026529656518864e-06,
|
1837 |
+
"loss": 1.399,
|
1838 |
+
"step": 1525
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 2.48,
|
1842 |
+
"learning_rate": 2.936453704242215e-06,
|
1843 |
+
"loss": 1.4136,
|
1844 |
+
"step": 1530
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 2.49,
|
1848 |
+
"learning_rate": 2.8476322080139862e-06,
|
1849 |
+
"loss": 1.4474,
|
1850 |
+
"step": 1535
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.5,
|
1854 |
+
"learning_rate": 2.760071697699729e-06,
|
1855 |
+
"loss": 1.4542,
|
1856 |
+
"step": 1540
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 2.5,
|
1860 |
+
"learning_rate": 2.673778610461448e-06,
|
1861 |
+
"loss": 1.4176,
|
1862 |
+
"step": 1545
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 2.51,
|
1866 |
+
"learning_rate": 2.588759290284337e-06,
|
1867 |
+
"loss": 1.4471,
|
1868 |
+
"step": 1550
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 2.52,
|
1872 |
+
"learning_rate": 2.505019987510426e-06,
|
1873 |
+
"loss": 1.4217,
|
1874 |
+
"step": 1555
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 2.53,
|
1878 |
+
"learning_rate": 2.4225668583790474e-06,
|
1879 |
+
"loss": 1.4194,
|
1880 |
+
"step": 1560
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 2.54,
|
1884 |
+
"learning_rate": 2.3414059645742504e-06,
|
1885 |
+
"loss": 1.3959,
|
1886 |
+
"step": 1565
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 2.54,
|
1890 |
+
"learning_rate": 2.261543272779192e-06,
|
1891 |
+
"loss": 1.4689,
|
1892 |
+
"step": 1570
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.55,
|
1896 |
+
"learning_rate": 2.1829846542374565e-06,
|
1897 |
+
"loss": 1.4568,
|
1898 |
+
"step": 1575
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 2.56,
|
1902 |
+
"learning_rate": 2.105735884321436e-06,
|
1903 |
+
"loss": 1.451,
|
1904 |
+
"step": 1580
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 2.57,
|
1908 |
+
"learning_rate": 2.029802642107734e-06,
|
1909 |
+
"loss": 1.4418,
|
1910 |
+
"step": 1585
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 2.58,
|
1914 |
+
"learning_rate": 1.9551905099596813e-06,
|
1915 |
+
"loss": 1.4619,
|
1916 |
+
"step": 1590
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 2.58,
|
1920 |
+
"learning_rate": 1.8819049731169059e-06,
|
1921 |
+
"loss": 1.4182,
|
1922 |
+
"step": 1595
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 2.59,
|
1926 |
+
"learning_rate": 1.809951419292104e-06,
|
1927 |
+
"loss": 1.4095,
|
1928 |
+
"step": 1600
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 2.6,
|
1932 |
+
"learning_rate": 1.7393351382749424e-06,
|
1933 |
+
"loss": 1.4397,
|
1934 |
+
"step": 1605
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.61,
|
1938 |
+
"learning_rate": 1.6700613215431549e-06,
|
1939 |
+
"loss": 1.4747,
|
1940 |
+
"step": 1610
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 2.62,
|
1944 |
+
"learning_rate": 1.6021350618809184e-06,
|
1945 |
+
"loss": 1.4356,
|
1946 |
+
"step": 1615
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 2.62,
|
1950 |
+
"learning_rate": 1.5355613530044089e-06,
|
1951 |
+
"loss": 1.4381,
|
1952 |
+
"step": 1620
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 2.63,
|
1956 |
+
"learning_rate": 1.470345089194709e-06,
|
1957 |
+
"loss": 1.4444,
|
1958 |
+
"step": 1625
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 2.64,
|
1962 |
+
"learning_rate": 1.4064910649379803e-06,
|
1963 |
+
"loss": 1.469,
|
1964 |
+
"step": 1630
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 2.65,
|
1968 |
+
"learning_rate": 1.3440039745729894e-06,
|
1969 |
+
"loss": 1.4427,
|
1970 |
+
"step": 1635
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 2.66,
|
1974 |
+
"learning_rate": 1.2828884119460105e-06,
|
1975 |
+
"loss": 1.3941,
|
1976 |
+
"step": 1640
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 2.67,
|
1980 |
+
"learning_rate": 1.2231488700730742e-06,
|
1981 |
+
"loss": 1.4452,
|
1982 |
+
"step": 1645
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 2.67,
|
1986 |
+
"learning_rate": 1.1647897408096886e-06,
|
1987 |
+
"loss": 1.4236,
|
1988 |
+
"step": 1650
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 2.68,
|
1992 |
+
"learning_rate": 1.107815314527929e-06,
|
1993 |
+
"loss": 1.4538,
|
1994 |
+
"step": 1655
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 2.69,
|
1998 |
+
"learning_rate": 1.0522297798010594e-06,
|
1999 |
+
"loss": 1.4112,
|
2000 |
+
"step": 1660
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 2.7,
|
2004 |
+
"learning_rate": 9.980372230955693e-07,
|
2005 |
+
"loss": 1.4808,
|
2006 |
+
"step": 1665
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 2.71,
|
2010 |
+
"learning_rate": 9.452416284707743e-07,
|
2011 |
+
"loss": 1.4509,
|
2012 |
+
"step": 1670
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 2.71,
|
2016 |
+
"learning_rate": 8.938468772859132e-07,
|
2017 |
+
"loss": 1.4414,
|
2018 |
+
"step": 1675
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 2.72,
|
2022 |
+
"learning_rate": 8.438567479147975e-07,
|
2023 |
+
"loss": 1.4203,
|
2024 |
+
"step": 1680
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 2.73,
|
2028 |
+
"learning_rate": 7.952749154680405e-07,
|
2029 |
+
"loss": 1.4294,
|
2030 |
+
"step": 1685
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 2.74,
|
2034 |
+
"learning_rate": 7.481049515228811e-07,
|
2035 |
+
"loss": 1.4136,
|
2036 |
+
"step": 1690
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 2.75,
|
2040 |
+
"learning_rate": 7.023503238606122e-07,
|
2041 |
+
"loss": 1.4316,
|
2042 |
+
"step": 1695
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 2.75,
|
2046 |
+
"learning_rate": 6.580143962116281e-07,
|
2047 |
+
"loss": 1.4645,
|
2048 |
+
"step": 1700
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 2.76,
|
2052 |
+
"learning_rate": 6.151004280081574e-07,
|
2053 |
+
"loss": 1.4692,
|
2054 |
+
"step": 1705
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 2.77,
|
2058 |
+
"learning_rate": 5.736115741446146e-07,
|
2059 |
+
"loss": 1.4408,
|
2060 |
+
"step": 1710
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 2.78,
|
2064 |
+
"learning_rate": 5.335508847456794e-07,
|
2065 |
+
"loss": 1.4552,
|
2066 |
+
"step": 1715
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 2.79,
|
2070 |
+
"learning_rate": 4.949213049420576e-07,
|
2071 |
+
"loss": 1.4657,
|
2072 |
+
"step": 1720
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 2.79,
|
2076 |
+
"learning_rate": 4.577256746539638e-07,
|
2077 |
+
"loss": 1.4189,
|
2078 |
+
"step": 1725
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 2.8,
|
2082 |
+
"learning_rate": 4.2196672838233257e-07,
|
2083 |
+
"loss": 1.4573,
|
2084 |
+
"step": 1730
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 2.81,
|
2088 |
+
"learning_rate": 3.876470950078037e-07,
|
2089 |
+
"loss": 1.4382,
|
2090 |
+
"step": 1735
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 2.82,
|
2094 |
+
"learning_rate": 3.5476929759743927e-07,
|
2095 |
+
"loss": 1.4272,
|
2096 |
+
"step": 1740
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 2.83,
|
2100 |
+
"learning_rate": 3.233357532192494e-07,
|
2101 |
+
"loss": 1.4866,
|
2102 |
+
"step": 1745
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 2.84,
|
2106 |
+
"learning_rate": 2.933487727644813e-07,
|
2107 |
+
"loss": 1.4132,
|
2108 |
+
"step": 1750
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 2.84,
|
2112 |
+
"learning_rate": 2.648105607777507e-07,
|
2113 |
+
"loss": 1.4498,
|
2114 |
+
"step": 1755
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 2.85,
|
2118 |
+
"learning_rate": 2.3772321529494712e-07,
|
2119 |
+
"loss": 1.4505,
|
2120 |
+
"step": 1760
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 2.86,
|
2124 |
+
"learning_rate": 2.1208872768901713e-07,
|
2125 |
+
"loss": 1.4338,
|
2126 |
+
"step": 1765
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 2.87,
|
2130 |
+
"learning_rate": 1.8790898252354583e-07,
|
2131 |
+
"loss": 1.4299,
|
2132 |
+
"step": 1770
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 2.88,
|
2136 |
+
"learning_rate": 1.6518575741421904e-07,
|
2137 |
+
"loss": 1.4378,
|
2138 |
+
"step": 1775
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 2.88,
|
2142 |
+
"learning_rate": 1.4392072289814319e-07,
|
2143 |
+
"loss": 1.4323,
|
2144 |
+
"step": 1780
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 2.89,
|
2148 |
+
"learning_rate": 1.241154423110169e-07,
|
2149 |
+
"loss": 1.4144,
|
2150 |
+
"step": 1785
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 2.9,
|
2154 |
+
"learning_rate": 1.0577137167221863e-07,
|
2155 |
+
"loss": 1.4343,
|
2156 |
+
"step": 1790
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 2.91,
|
2160 |
+
"learning_rate": 8.88898595777543e-08,
|
2161 |
+
"loss": 1.4625,
|
2162 |
+
"step": 1795
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 2.92,
|
2166 |
+
"learning_rate": 7.347214710111239e-08,
|
2167 |
+
"loss": 1.3614,
|
2168 |
+
"step": 1800
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 2.92,
|
2172 |
+
"learning_rate": 5.951936770202782e-08,
|
2173 |
+
"loss": 1.4099,
|
2174 |
+
"step": 1805
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 2.93,
|
2178 |
+
"learning_rate": 4.7032547143155417e-08,
|
2179 |
+
"loss": 1.4601,
|
2180 |
+
"step": 1810
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 2.94,
|
2184 |
+
"learning_rate": 3.60126034146524e-08,
|
2185 |
+
"loss": 1.4231,
|
2186 |
+
"step": 1815
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 2.95,
|
2190 |
+
"learning_rate": 2.6460346666696835e-08,
|
2191 |
+
"loss": 1.4549,
|
2192 |
+
"step": 1820
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 2.96,
|
2196 |
+
"learning_rate": 1.8376479149926353e-08,
|
2197 |
+
"loss": 1.4122,
|
2198 |
+
"step": 1825
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 2.96,
|
2202 |
+
"learning_rate": 1.176159516380837e-08,
|
2203 |
+
"loss": 1.3961,
|
2204 |
+
"step": 1830
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 2.97,
|
2208 |
+
"learning_rate": 6.616181012955025e-09,
|
2209 |
+
"loss": 1.4652,
|
2210 |
+
"step": 1835
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 2.98,
|
2214 |
+
"learning_rate": 2.9406149713628874e-09,
|
2215 |
+
"loss": 1.425,
|
2216 |
+
"step": 1840
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 2.99,
|
2220 |
+
"learning_rate": 7.351672546129785e-10,
|
2221 |
+
"loss": 1.4916,
|
2222 |
+
"step": 1845
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 3.0,
|
2226 |
+
"learning_rate": 0.0,
|
2227 |
+
"loss": 1.3883,
|
2228 |
+
"step": 1850
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 3.0,
|
2232 |
+
"step": 1851,
|
2233 |
+
"total_flos": 1.8340911973547377e+18,
|
2234 |
+
"train_loss": 2.0081952639620475,
|
2235 |
+
"train_runtime": 43810.4873,
|
2236 |
+
"train_samples_per_second": 5.415,
|
2237 |
+
"train_steps_per_second": 0.042
|
2238 |
+
}
|
2239 |
+
],
|
2240 |
+
"max_steps": 1851,
|
2241 |
+
"num_train_epochs": 3,
|
2242 |
+
"total_flos": 1.8340911973547377e+18,
|
2243 |
+
"trial_name": null,
|
2244 |
+
"trial_params": null
|
2245 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b8aabfc07bd4f8b579a13e3c5ed3e8dbbef17b9bcbe8603b010a6c6aac8df2d
|
3 |
+
size 4207
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
import deepspeed
|
21 |
+
from deepspeed.utils import logger
|
22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
23 |
+
OPTIMIZER_STATE_DICT,
|
24 |
+
PARAM_SHAPES,
|
25 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
26 |
+
FP32_FLAT_GROUPS,
|
27 |
+
ZERO_STAGE,
|
28 |
+
PARTITION_COUNT,
|
29 |
+
PARAM_SHAPES,
|
30 |
+
BUFFER_NAMES)
|
31 |
+
|
32 |
+
debug = 0
|
33 |
+
|
34 |
+
# load to cpu
|
35 |
+
device = torch.device('cpu')
|
36 |
+
|
37 |
+
|
38 |
+
def atoi(text):
|
39 |
+
return int(text) if text.isdigit() else text
|
40 |
+
|
41 |
+
|
42 |
+
def natural_keys(text):
|
43 |
+
'''
|
44 |
+
alist.sort(key=natural_keys) sorts in human order
|
45 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
46 |
+
(See Toothy's implementation in the comments)
|
47 |
+
'''
|
48 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
49 |
+
|
50 |
+
|
51 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
52 |
+
if not os.path.isdir(checkpoint_dir):
|
53 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
54 |
+
|
55 |
+
# there should be only one file
|
56 |
+
if zero_stage == 2:
|
57 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
58 |
+
elif zero_stage == 3:
|
59 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
60 |
+
|
61 |
+
if not os.path.exists(file):
|
62 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
63 |
+
|
64 |
+
return file
|
65 |
+
|
66 |
+
|
67 |
+
def get_optim_files(checkpoint_dir):
|
68 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
69 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
70 |
+
"*_optim_states.pt")),
|
71 |
+
key=natural_keys)
|
72 |
+
|
73 |
+
if len(optim_files) == 0:
|
74 |
+
raise FileNotFoundError(
|
75 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
76 |
+
|
77 |
+
return optim_files
|
78 |
+
|
79 |
+
|
80 |
+
def parse_model_state(file):
|
81 |
+
state_dict = torch.load(file, map_location=device)
|
82 |
+
|
83 |
+
if BUFFER_NAMES not in state_dict:
|
84 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
85 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
86 |
+
if debug:
|
87 |
+
print("Found buffers:", buffer_names)
|
88 |
+
|
89 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
90 |
+
buffers = {
|
91 |
+
k: v.float()
|
92 |
+
for k,
|
93 |
+
v in state_dict["module"].items() if k in buffer_names
|
94 |
+
}
|
95 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
96 |
+
|
97 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
98 |
+
|
99 |
+
return buffers, param_shapes, ds_version
|
100 |
+
|
101 |
+
|
102 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
103 |
+
|
104 |
+
total_files = len(files)
|
105 |
+
state_dicts = []
|
106 |
+
for f in files:
|
107 |
+
state_dicts.append(torch.load(f, map_location=device))
|
108 |
+
|
109 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
110 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
111 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
112 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
113 |
+
|
114 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
115 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
116 |
+
# use the max of the partition_count to get the dp world_size.
|
117 |
+
|
118 |
+
if type(world_size) is list:
|
119 |
+
world_size = max(world_size)
|
120 |
+
|
121 |
+
if world_size != total_files:
|
122 |
+
raise ValueError(
|
123 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
124 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
125 |
+
)
|
126 |
+
|
127 |
+
# the groups are named differently in each stage
|
128 |
+
if zero_stage == 2:
|
129 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
130 |
+
elif zero_stage == 3:
|
131 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
132 |
+
else:
|
133 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
134 |
+
|
135 |
+
if zero_stage == 2:
|
136 |
+
fp32_flat_groups = [
|
137 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
138 |
+
for i in range(len(state_dicts))
|
139 |
+
]
|
140 |
+
elif zero_stage == 3:
|
141 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
142 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
143 |
+
#
|
144 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
145 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
146 |
+
|
147 |
+
fp32_flat_groups = [
|
148 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
149 |
+
0) for i in range(len(state_dicts))
|
150 |
+
]
|
151 |
+
|
152 |
+
return zero_stage, world_size, fp32_flat_groups
|
153 |
+
|
154 |
+
|
155 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
156 |
+
"""
|
157 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
158 |
+
|
159 |
+
Args:
|
160 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
161 |
+
|
162 |
+
"""
|
163 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
164 |
+
|
165 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
166 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
167 |
+
print(
|
168 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
169 |
+
|
170 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
171 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
172 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
176 |
+
param_shapes,
|
177 |
+
fp32_flat_groups,
|
178 |
+
buffers)
|
179 |
+
elif zero_stage == 3:
|
180 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
181 |
+
param_shapes,
|
182 |
+
fp32_flat_groups,
|
183 |
+
buffers)
|
184 |
+
|
185 |
+
|
186 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
187 |
+
param_shapes,
|
188 |
+
fp32_flat_groups,
|
189 |
+
buffers):
|
190 |
+
|
191 |
+
# Reconstruction protocol:
|
192 |
+
#
|
193 |
+
# XXX: document this
|
194 |
+
|
195 |
+
if debug:
|
196 |
+
for i in range(world_size):
|
197 |
+
for j in range(len(fp32_flat_groups[0])):
|
198 |
+
print(
|
199 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
200 |
+
|
201 |
+
# XXX: memory usage doubles here (zero2)
|
202 |
+
num_param_groups = len(fp32_flat_groups[0])
|
203 |
+
merged_single_partition_of_fp32_groups = []
|
204 |
+
for i in range(num_param_groups):
|
205 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
206 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
207 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
208 |
+
avail_numel = sum([
|
209 |
+
full_single_fp32_vector.numel()
|
210 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
211 |
+
])
|
212 |
+
|
213 |
+
if debug:
|
214 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
215 |
+
wanted_numel = sum(
|
216 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
217 |
+
# not asserting if there is a mismatch due to possible padding
|
218 |
+
print(f"Have {avail_numel} numels to process.")
|
219 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
220 |
+
|
221 |
+
state_dict = OrderedDict()
|
222 |
+
|
223 |
+
# buffers
|
224 |
+
state_dict.update(buffers)
|
225 |
+
if debug:
|
226 |
+
print(f"added {len(buffers)} buffers")
|
227 |
+
|
228 |
+
# params
|
229 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
230 |
+
# out-of-core computing solution
|
231 |
+
total_numel = 0
|
232 |
+
total_params = 0
|
233 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
234 |
+
offset = 0
|
235 |
+
avail_numel = full_single_fp32_vector.numel()
|
236 |
+
for name, shape in shapes.items():
|
237 |
+
|
238 |
+
unpartitioned_numel = shape.numel()
|
239 |
+
total_numel += unpartitioned_numel
|
240 |
+
total_params += 1
|
241 |
+
|
242 |
+
if debug:
|
243 |
+
print(
|
244 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
245 |
+
)
|
246 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
247 |
+
0,
|
248 |
+
offset,
|
249 |
+
unpartitioned_numel).view(shape)
|
250 |
+
offset += unpartitioned_numel
|
251 |
+
|
252 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
253 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
254 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
255 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
256 |
+
align_to = 2 * world_size
|
257 |
+
|
258 |
+
def zero2_align(x):
|
259 |
+
return align_to * math.ceil(x / align_to)
|
260 |
+
|
261 |
+
if debug:
|
262 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
263 |
+
|
264 |
+
offset = zero2_align(offset)
|
265 |
+
avail_numel = zero2_align(avail_numel)
|
266 |
+
|
267 |
+
if debug:
|
268 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
269 |
+
|
270 |
+
# Sanity check
|
271 |
+
if offset != avail_numel:
|
272 |
+
raise ValueError(
|
273 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
274 |
+
|
275 |
+
print(
|
276 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
277 |
+
)
|
278 |
+
|
279 |
+
return state_dict
|
280 |
+
|
281 |
+
|
282 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
283 |
+
remainder = unpartitioned_numel % world_size
|
284 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
285 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
286 |
+
return partitioned_numel, padding_numel
|
287 |
+
|
288 |
+
|
289 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
290 |
+
param_shapes,
|
291 |
+
fp32_flat_groups,
|
292 |
+
buffers):
|
293 |
+
|
294 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
295 |
+
# param, re-consolidating each param, while dealing with padding if any
|
296 |
+
|
297 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
298 |
+
# merge list of dicts, preserving order
|
299 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
for i in range(world_size):
|
303 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
304 |
+
|
305 |
+
wanted_params = len(param_shapes)
|
306 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
307 |
+
# not asserting if there is a mismatch due to possible padding
|
308 |
+
print(f"Have {avail_numel} numels to process.")
|
309 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
310 |
+
|
311 |
+
state_dict = OrderedDict()
|
312 |
+
|
313 |
+
# buffers
|
314 |
+
state_dict.update(buffers)
|
315 |
+
if debug:
|
316 |
+
print(f"added {len(buffers)} buffers")
|
317 |
+
|
318 |
+
# params
|
319 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
320 |
+
# out-of-core computing solution
|
321 |
+
offset = 0
|
322 |
+
total_numel = 0
|
323 |
+
total_params = 0
|
324 |
+
for name, shape in param_shapes.items():
|
325 |
+
|
326 |
+
unpartitioned_numel = shape.numel()
|
327 |
+
total_numel += unpartitioned_numel
|
328 |
+
total_params += 1
|
329 |
+
|
330 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
331 |
+
|
332 |
+
if debug:
|
333 |
+
print(
|
334 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
335 |
+
)
|
336 |
+
|
337 |
+
# XXX: memory usage doubles here
|
338 |
+
state_dict[name] = torch.cat(
|
339 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
340 |
+
offset,
|
341 |
+
partitioned_numel)
|
342 |
+
for i in range(world_size)),
|
343 |
+
0).narrow(0,
|
344 |
+
0,
|
345 |
+
unpartitioned_numel).view(shape)
|
346 |
+
offset += partitioned_numel
|
347 |
+
|
348 |
+
offset *= world_size
|
349 |
+
|
350 |
+
# Sanity check
|
351 |
+
if offset != avail_numel:
|
352 |
+
raise ValueError(
|
353 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
354 |
+
|
355 |
+
print(
|
356 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
357 |
+
)
|
358 |
+
|
359 |
+
return state_dict
|
360 |
+
|
361 |
+
|
362 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
363 |
+
"""
|
364 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
365 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
366 |
+
via a model hub.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
370 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
- pytorch ``state_dict``
|
374 |
+
|
375 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
376 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
377 |
+
the checkpoint.
|
378 |
+
|
379 |
+
A typical usage might be ::
|
380 |
+
|
381 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
382 |
+
# do the training and checkpoint saving
|
383 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
384 |
+
model = model.cpu() # move to cpu
|
385 |
+
model.load_state_dict(state_dict)
|
386 |
+
# submit to model hub or save the model to share with others
|
387 |
+
|
388 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
389 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
390 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
391 |
+
|
392 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
393 |
+
|
394 |
+
"""
|
395 |
+
if tag is None:
|
396 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
397 |
+
if os.path.isfile(latest_path):
|
398 |
+
with open(latest_path, 'r') as fd:
|
399 |
+
tag = fd.read().strip()
|
400 |
+
else:
|
401 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
402 |
+
|
403 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
404 |
+
|
405 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
406 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
407 |
+
|
408 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
409 |
+
|
410 |
+
|
411 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
412 |
+
"""
|
413 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
414 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
418 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
419 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
420 |
+
"""
|
421 |
+
|
422 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
423 |
+
print(f"Saving fp32 state dict to {output_file}")
|
424 |
+
torch.save(state_dict, output_file)
|
425 |
+
|
426 |
+
|
427 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
428 |
+
"""
|
429 |
+
1. Put the provided model to cpu
|
430 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
431 |
+
3. Load it into the provided model
|
432 |
+
|
433 |
+
Args:
|
434 |
+
- ``model``: the model object to update
|
435 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
436 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
437 |
+
|
438 |
+
Returns:
|
439 |
+
- ``model`: modified model
|
440 |
+
|
441 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
442 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
443 |
+
conveniently placed for you in the checkpoint folder.
|
444 |
+
|
445 |
+
A typical usage might be ::
|
446 |
+
|
447 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
448 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
449 |
+
# submit to model hub or save the model to share with others
|
450 |
+
|
451 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
452 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
453 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
454 |
+
|
455 |
+
"""
|
456 |
+
logger.info(f"Extracting fp32 weights")
|
457 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
458 |
+
|
459 |
+
logger.info(f"Overwriting model with fp32 weights")
|
460 |
+
model = model.cpu()
|
461 |
+
model.load_state_dict(state_dict, strict=False)
|
462 |
+
|
463 |
+
return model
|
464 |
+
|
465 |
+
|
466 |
+
if __name__ == "__main__":
|
467 |
+
|
468 |
+
parser = argparse.ArgumentParser()
|
469 |
+
parser.add_argument(
|
470 |
+
"checkpoint_dir",
|
471 |
+
type=str,
|
472 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
473 |
+
parser.add_argument(
|
474 |
+
"output_file",
|
475 |
+
type=str,
|
476 |
+
help=
|
477 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
478 |
+
)
|
479 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
480 |
+
args = parser.parse_args()
|
481 |
+
|
482 |
+
debug = args.debug
|
483 |
+
|
484 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|