File size: 4,596 Bytes
d81a0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3513e6a
d81a0f9
 
 
 
 
 
 
 
 
3513e6a
 
 
d81a0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3513e6a
 
d81a0f9
 
 
3513e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81a0f9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-US
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: PolyAI/minds14
      type: PolyAI/minds14
      config: en-AU
      split: train
      args: en-AU
    metrics:
    - name: Wer
      type: wer
      value: 0.19386369807222373
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny-en-US

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5874
- Wer Ortho: 0.1978
- Wer: 0.1939

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 400

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| No log        | 0.36  | 10   | 0.5445          | 0.1970    | 0.1930 |
| No log        | 0.71  | 20   | 0.5571          | 0.1973    | 0.1939 |
| 0.0009        | 1.07  | 30   | 0.5571          | 0.1981    | 0.1936 |
| 0.0009        | 1.43  | 40   | 0.5535          | 0.1958    | 0.1920 |
| 0.0024        | 1.79  | 50   | 0.5568          | 0.1967    | 0.1930 |
| 0.0024        | 2.14  | 60   | 0.5679          | 0.2024    | 0.1996 |
| 0.0024        | 2.5   | 70   | 0.5574          | 0.1970    | 0.1944 |
| 0.0019        | 2.86  | 80   | 0.5454          | 0.1956    | 0.1936 |
| 0.0019        | 3.21  | 90   | 0.5541          | 0.2044    | 0.1982 |
| 0.0043        | 3.57  | 100  | 0.5330          | 0.1998    | 0.1936 |
| 0.0043        | 3.93  | 110  | 0.5524          | 0.1981    | 0.1958 |
| 0.0043        | 4.29  | 120  | 0.5482          | 0.1958    | 0.1933 |
| 0.0043        | 4.64  | 130  | 0.5554          | 0.1984    | 0.1952 |
| 0.0043        | 5.0   | 140  | 0.5634          | 0.1998    | 0.1949 |
| 0.001         | 5.36  | 150  | 0.5526          | 0.1990    | 0.1930 |
| 0.001         | 5.71  | 160  | 0.5511          | 0.1973    | 0.1920 |
| 0.001         | 6.07  | 170  | 0.5548          | 0.1953    | 0.1917 |
| 0.0006        | 6.43  | 180  | 0.5589          | 0.2047    | 0.1998 |
| 0.0006        | 6.79  | 190  | 0.5657          | 0.2027    | 0.1982 |
| 0.0004        | 7.14  | 200  | 0.5686          | 0.1961    | 0.1933 |
| 0.0004        | 7.5   | 210  | 0.5714          | 0.1944    | 0.1911 |
| 0.0004        | 7.86  | 220  | 0.5710          | 0.1976    | 0.1941 |
| 0.0002        | 8.21  | 230  | 0.5656          | 0.1973    | 0.1925 |
| 0.0002        | 8.57  | 240  | 0.5661          | 0.1981    | 0.1928 |
| 0.0001        | 8.93  | 250  | 0.5688          | 0.1984    | 0.1930 |
| 0.0001        | 9.29  | 260  | 0.5720          | 0.1967    | 0.1920 |
| 0.0001        | 9.64  | 270  | 0.5745          | 0.1970    | 0.1930 |
| 0.0001        | 10.0  | 280  | 0.5758          | 0.1964    | 0.1925 |
| 0.0001        | 10.36 | 290  | 0.5767          | 0.1970    | 0.1930 |
| 0.0001        | 10.71 | 300  | 0.5780          | 0.1978    | 0.1941 |
| 0.0001        | 11.07 | 310  | 0.5793          | 0.1978    | 0.1941 |
| 0.0001        | 11.43 | 320  | 0.5803          | 0.1976    | 0.1939 |
| 0.0001        | 11.79 | 330  | 0.5815          | 0.1973    | 0.1933 |
| 0.0001        | 12.14 | 340  | 0.5824          | 0.1973    | 0.1933 |
| 0.0001        | 12.5  | 350  | 0.5833          | 0.1973    | 0.1933 |
| 0.0001        | 12.86 | 360  | 0.5843          | 0.1970    | 0.1933 |
| 0.0001        | 13.21 | 370  | 0.5850          | 0.1976    | 0.1936 |
| 0.0001        | 13.57 | 380  | 0.5856          | 0.1978    | 0.1939 |
| 0.0001        | 13.93 | 390  | 0.5865          | 0.1978    | 0.1939 |
| 0.0001        | 14.29 | 400  | 0.5874          | 0.1978    | 0.1939 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1