SYSTEM: NUM_GPUS: 1 NUM_CPUS: 1 MODEL: ARCHITECTURE: unet_plus_3d BLOCK_TYPE: residual_se INPUT_SIZE: [17, 225, 225] OUTPUT_SIZE: [17, 225, 225] IN_PLANES: 1 NORM_MODE: sync_bn FILTERS: [32, 64, 96, 128, 160] DATASET: IMAGE_NAME: ["im_train.json"] LABEL_NAME: ["mito_train.json"] INPUT_PATH: datasets/MitoEM_R/ # or your own dataset path OUTPUT_PATH: outputs/MitoEM_R/ PAD_SIZE: [4, 64, 64] DO_CHUNK_TITLE: 0 DATA_CHUNK_NUM: [4, 8, 8] DATA_CHUNK_ITER: 10000 SOLVER: LR_SCHEDULER_NAME: WarmupCosineLR BASE_LR: 0.04 ITERATION_STEP: 1 ITERATION_SAVE: 5000 ITERATION_TOTAL: 150000 SAMPLES_PER_BATCH: 2 INFERENCE: INPUT_SIZE: [17, 257, 257] OUTPUT_SIZE: [17, 257, 257] IMAGE_NAME: /n/holylfs05/LABS/pfister_lab/Lab/coxfs01/pfister_lab2/Lab/donglai/eng/db/eva/2000_73728-310272.h5 OUTPUT_PATH: outputs/MitoEM_R/test/ OUTPUT_NAME: result # will automatically save to HDF5 PAD_SIZE: [4, 64, 64] AUG_MODE: mean AUG_NUM: 4 STRIDE: [8, 128, 128] SAMPLES_PER_BATCH: 8