|
import math |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
from icecream import ic |
|
|
|
def get_abs_pos(abs_pos, tgt_size): |
|
|
|
|
|
|
|
src_size = int(math.sqrt(abs_pos.size(0))) |
|
tgt_size = int(math.sqrt(tgt_size)) |
|
dtype = abs_pos.dtype |
|
|
|
if src_size != tgt_size: |
|
return F.interpolate( |
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), |
|
size=(tgt_size, tgt_size), |
|
mode="bicubic", |
|
align_corners=False, |
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) |
|
else: |
|
return abs_pos |
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
|
|
class MplugOwlVisionEmbeddings(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) |
|
|
|
self.patch_embed = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=self.hidden_size, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
bias=False, |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) |
|
|
|
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
batch_size = pixel_values.size(0) |
|
image_embeds = self.patch_embed(pixel_values) |
|
image_embeds = image_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype) |
|
embeddings = torch.cat([class_embeds, image_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) |
|
embeddings = self.pre_layernorm(embeddings) |
|
return embeddings |
|
|
|
|
|
|
|
class MplugOwlVisionAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
if self.head_dim * self.num_heads != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = nn.Dropout(config.attention_dropout) |
|
|
|
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) |
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, seq_len, embed_dim = hidden_states.size() |
|
|
|
mixed_qkv = self.query_key_value(hidden_states) |
|
|
|
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( |
|
3, 0, 2, 1, 4 |
|
) |
|
query_states, key_states, value_states = ( |
|
mixed_qkv[0], |
|
mixed_qkv[1], |
|
mixed_qkv[2], |
|
) |
|
|
|
if False: |
|
|
|
query_states = query_states.permute(0, 2, 1, 3).contiguous() |
|
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1) |
|
|
|
key_states = key_states.permute(0, 2, 1, 3).contiguous() |
|
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1) |
|
|
|
value_states = value_states.permute(0, 2, 1, 3).contiguous() |
|
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1) |
|
|
|
cu_seqlens = torch.arange( |
|
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device |
|
) |
|
|
|
context_layer = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens, |
|
cu_seqlens, |
|
seq_len, |
|
seq_len, |
|
self.dropout if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
causal=False, |
|
return_attn_probs=False, |
|
) |
|
|
|
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2)) |
|
else: |
|
|
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores * self.scale |
|
|
|
|
|
attention_probs = torch.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) |
|
context_layer = context_layer.reshape(new_context_layer_shape) |
|
|
|
output = self.dense(context_layer) |
|
|
|
outputs = (output, attention_probs) if output_attentions else (output, None) |
|
|
|
return outputs |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class MplugOwlMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = QuickGELU() |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class MplugOwlVisionEncoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = MplugOwlVisionAttention(config) |
|
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
self.mlp = MplugOwlMLP(config) |
|
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
`(config.encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
head_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = hidden_states + residual |
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = hidden_states + residual |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class MplugOwlVisionEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`MplugOwlVisionEncoderLayer`]. |
|
|
|
Args: |
|
config (`MplugOwlVisionConfig`): |
|
The corresponding vision configuration for the `MplugOwlEncoder`. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = True |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Embedded representation of the inputs. Should be float, not int tokens. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class MplugOwlVisionModel(PreTrainedModel): |
|
main_input_name = "pixel_values" |
|
_no_split_modules = ["MplugOwlVisionEncoderLayer"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
|
|
self.embeddings = MplugOwlVisionEmbeddings(config) |
|
self.encoder = MplugOwlVisionEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
pooled_output = last_hidden_state[:, 0, :] |
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
|
|
class MplugOwlVisualAbstractorMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
in_features = config.hidden_size |
|
self.act = nn.SiLU() |
|
|
|
self.w1 = nn.Linear(in_features, config.intermediate_size) |
|
self.w2 = nn.Linear(config.intermediate_size, in_features) |
|
self.w3 = nn.Linear(in_features, config.intermediate_size) |
|
self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states) |
|
hidden_states = self.ffn_ln(hidden_states) |
|
hidden_states = self.w2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention heads (%d)" |
|
% (config.hidden_size, config.num_attention_heads) |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.save_attention = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grids = config.grid_size |
|
self.register_buffer( |
|
'q_pos_embed', |
|
torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float() |
|
) |
|
self.register_buffer( |
|
'k_pos_embed', |
|
torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float() |
|
) |
|
|
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def save_attention_map(self, attention_map): |
|
self.attention_map = attention_map |
|
|
|
def get_attention_map(self): |
|
return self.attention_map |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
|
|
|
|
|
|
qk_pos_embed = torch.cat([self.q_pos_embed, self.k_pos_embed], dim = 0).unsqueeze(0).to(dtype=hidden_states.dtype) |
|
|
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states + qk_pos_embed)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
|
|
mixed_query_layer = self.query(hidden_states + self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
if self.save_attention: |
|
self.save_attention_map(attention_probs) |
|
attention_probs.register_hook(self.save_attn_gradients) |
|
|
|
|
|
|
|
attention_probs_dropped = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs_dropped = attention_probs_dropped * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs_dropped, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class MplugOwlVisualAbstractorCrossOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
dim = config.hidden_size |
|
self.out_proj = nn.Linear(dim, dim, bias=True) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.mlp = MplugOwlVisualAbstractorMLP(config) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
input_tensor = input_tensor + self.out_proj(hidden_states) |
|
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor)) |
|
return input_tensor |
|
|
|
|
|
class MplugOwlVisualAbstractorAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config) |
|
self.output = MplugOwlVisualAbstractorCrossOutput(config) |
|
self.pruned_heads = set() |
|
self.norm1 = nn.LayerNorm(config.hidden_size) |
|
self.normk = nn.LayerNorm(config.hidden_size) |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
encoder_hidden_states = self.normk(encoder_hidden_states) |
|
encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) |
|
encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1) |
|
self_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class MplugOwlVisualAbstractorLayer(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
|
|
self.layer_idx = layer_idx |
|
|
|
self.crossattention = MplugOwlVisualAbstractorAttention(config) |
|
self.has_cross_attention = True |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=False, |
|
): |
|
if encoder_hidden_states is None: |
|
raise ValueError("encoder_hidden_states must be given for cross-attention layers") |
|
cross_attention_outputs = self.crossattention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
query_attention_output = cross_attention_outputs[0] |
|
|
|
outputs = (query_attention_output,) |
|
return outputs |
|
|
|
|
|
class MplugOwlVisualAbstractorEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList( |
|
[MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.gradient_checkpointing = True |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
for i in range(self.config.num_hidden_layers): |
|
layer_module = self.layers[i] |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
) |
|
|
|
|
|
class MplugOwlVisualAbstractorModel(PreTrainedModel): |
|
_no_split_modules = ["MplugOwlVisualAbstractorLayer"] |
|
def __init__(self, config, language_hidden_size): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.encoder = MplugOwlVisualAbstractorEncoder(config) |
|
self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) |
|
self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size)) |
|
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) |
|
|
|
self.post_init() |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def get_extended_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int], |
|
device: torch.device, |
|
) -> torch.Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (`Tuple[int]`): |
|
The shape of the input to the model. |
|
device: (`torch.device`): |
|
The device of the input to the model. |
|
|
|
Returns: |
|
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. |
|
""" |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( |
|
input_shape, attention_mask.shape |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
return extended_attention_mask |
|
|
|
def forward( |
|
self, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: |
|
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and |
|
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are |
|
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key |
|
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape |
|
`(batch_size, sequence_length)`. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1) |
|
embedding_output = query_embeds |
|
input_shape = embedding_output.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = embedding_output.device |
|
|
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device |
|
) |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
|
|
if encoder_hidden_states is not None: |
|
if type(encoder_hidden_states) == list: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() |
|
else: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
|
|
if type(encoder_attention_mask) == list: |
|
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] |
|
elif encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = sequence_output[:, 0, :] |
|
|
|
sequence_output = self.visual_fc(sequence_output) |
|
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1) |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
|