File size: 7,091 Bytes
f31798b 252448b f31798b 252448b 02c8f96 252448b 02c8f96 252448b d6fe50e f31798b 252448b 02c8f96 252448b 02c8f96 252448b 02c8f96 252448b 02c8f96 252448b 02c8f96 252448b 02c8f96 252448b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
language: fr
datasets:
- FrenchMedMCQA
license: apache-2.0
model-index:
- name: qanastek/FrenchMedMCQA-BART-base-Wikipedia-BM25
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: FrenchMedMCQA
type: FrenchMedMCQA
config: FrenchMedMCQA
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 18.64
verified: true
- name: Hamming Score
type: hamming score
value: 38.72
verified: true
widget:
- text: "Parmi les bactéries suivantes, laquelle est un agent habituel de méningite néonatale? \n (A) Clostridium tetani (B) Salmonella sérovar Typhimurium (C) Streptococcus agalactiae . (D) Haemophilus influenzae (E) Vibrio cholerae\nLes premiers cas d’infection néonatale à streptocoques du groupe B ont été décrits par Eickhoff en 1964.Cette bactérie est aussi responsable d'infection chez les personnes âgées."
---
# FrenchMedMCQA : Multiple-choice question answering on pharmacology exams using BART-base, Wikipedia external knowledge and BM25 retriever
- Corpora: [FrenchMedMCQA](https://github.com/qanastek/FrenchMedMCQA)
- Model: [BART Base](https://huggingface.co/facebook/bart-base)
- Number of Epochs: 30
**People Involved**
* [Yanis LABRAK](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1)
* [Adrien BAZOGE](https://fr.linkedin.com/in/adrien-bazoge-6b511b145) (2)
* [Richard DUFOUR](https://cv.archives-ouvertes.fr/richard-dufour) (2)
* [Béatrice DAILLE](https://scholar.google.com/citations?user=-damXYEAAAAJ&hl=fr) (2)
* [Pierre-Antoine GOURRAUD](https://fr.linkedin.com/in/pierre-antoine-gourraud-35779b6) (3)
* [Emmanuel MORIN](https://scholar.google.fr/citations?user=tvTEtM0AAAAJ&hl=fr) (2)
* [Mickael ROUVIER](https://scholar.google.fr/citations?user=0fmu-VsAAAAJ&hl=fr) (1)
**Affiliations**
1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France.
2. [LS2N, TALN team](https://www.ls2n.fr/equipe/taln/), Nantes University, Nantes, France.
3. [CHU Nantes](https://www.chu-nantes.fr/), Nantes University, Nantes, France.
## Demo: How to use in HuggingFace Transformers
Requires [Transformers](https://pypi.org/project/transformers/): ```pip install transformers```
```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
path_model = "qanastek/FrenchMedMCQA-BART-base-Wikipedia-BM25"
tokenizer = AutoTokenizer.from_pretrained(path_model)
model = AutoModelForSequenceClassification.from_pretrained(path_model)
pipeline = pipeline(task="summarization", model=model, tokenizer=tokenizer) # CPU
dataset = load_dataset("qanastek/FrenchMedMCQA")["test"]
for e in dataset:
prediction = pipeline(source, truncation=True, max_length=900)[0]["summary_text"]
```
Output:
![Preview Output](preview.PNG)
## Training data
The questions and their associated candidate answer(s) were collected from real French pharmacy exams on the remede website. Questions and answers were manually created by medical experts and used during examinations. The dataset is composed of 2,025 questions with multiple answers and 1,080 with a single one, for a total of 3,105 questions. Each instance of the dataset contains an identifier, a question, five options (labeled from A to E) and correct answer(s). The average question length is 14.17 tokens and the average answer length is 6.44 tokens. The vocabulary size is of 13k words, of which 3.8k are estimated medical domain-specific words (i.e. a word related to the medical field). We find an average of 2.49 medical domain-specific words in each question (17 % of the words) and 2 in each answer (36 % of the words). On average, a medical domain-specific word is present in 2 questions and in 8 answers.
| # Answers | Training | Validation | Test | Total |
|:---------:|:--------:|:----------:|:----:|:-----:|
| 1 | 595 | 164 | 321 | 1,080 |
| 2 | 528 | 45 | 97 | 670 |
| 3 | 718 | 71 | 141 | 930 |
| 4 | 296 | 30 | 56 | 382 |
| 5 | 34 | 2 | 7 | 43 |
| Total | 2171 | 312 | 622 | 3,105 |
## Evaluation results
The test corpora used for this evaluation is available on [Github](https://github.com/qanastek/FrenchMedMCQA).
| Architecture | Hamming | EMR | Hamming | EMR | Hamming | EMR | Hamming | EMR | Hamming | EMR |
|:----------------:|:-------:|:-----:|:-------:|:-----:|:-------:|:-----:|:-------:|:-----:|:-------:|:-----:|
| BioBERT V1.1 | 36.19 | 15.43 | **38.72** | 16.72 | 33.33 | 14.14 | 35.13 | 16.23 | 34.27 | 13.98 |
| PubMedBERT | 33.98 | 14.14 | 34.00 | 13.98 | 35.66 | 15.59 | 33.87 | 14.79 | 35.44 | 14.79 |
| CamemBERT-base | 36.24 | 16.55 | 34.19 | 14.46 | 34.78 | 15.43 | 34.66 | 14.79 | 34.61 | 14.95 |
| XLM-RoBERTa-base | 37.92 | 17.20 | 31.26 | 11.89 | 35.84 | 16.07 | 32.47 | 14.63 | 33.00 | 14.95 |
| BART-base | 31.93 | 15.91 | 34.98 | **18.64** | 33.80 | 17.68 | 29.65 | 12.86 | 34.65 | 18.32 |
## BibTeX Citations
Please cite the following paper when using this model.
FrenchMedMCQA corpus and linked tools:
```latex
@unpublished{labrak:hal-03824241,
TITLE = {{FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain}},
AUTHOR = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Daille, B{\'e}atrice and Gourraud, Pierre-Antoine and Morin, Emmanuel and Rouvier, Mickael},
URL = {https://hal.archives-ouvertes.fr/hal-03824241},
NOTE = {working paper or preprint},
YEAR = {2022},
MONTH = Oct,
PDF = {https://hal.archives-ouvertes.fr/hal-03824241/file/LOUHI_2022___QA-3.pdf},
HAL_ID = {hal-03824241},
HAL_VERSION = {v1},
}
```
HuggingFace's Transformers :
```latex
@misc{https://doi.org/10.48550/arxiv.1910.03771,
doi = {10.48550/ARXIV.1910.03771},
url = {https://arxiv.org/abs/1910.03771},
author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien and Delangue, Clement and Moi, Anthony and Cistac, Pierric and Rault, Tim and Louf, Rémi and Funtowicz, Morgan and Davison, Joe and Shleifer, Sam and von Platen, Patrick and Ma, Clara and Jernite, Yacine and Plu, Julien and Xu, Canwen and Scao, Teven Le and Gugger, Sylvain and Drame, Mariama and Lhoest, Quentin and Rush, Alexander M.},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {HuggingFace's Transformers: State-of-the-art Natural Language Processing},
publisher = {arXiv},
year = {2019},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
## Acknowledgment
This work was financially supported by [Zenidoc](https://zenidoc.fr/), the [DIETS](https://anr-diets.univ-avignon.fr/) project financed by the Agence Nationale de la Recherche (ANR) under contract ANR-20-CE23-0005 and the ANR [AIBy4](https://aiby4.ls2n.fr/) (ANR-20-THIA-0011).
|