--- license: llama3.1 base_model: NousResearch/Meta-Llama-3.1-8B-Instruct tags: - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-EI1-120K-fix-32gpus results: [] --- # Llama-3.1-8B-Instruct-EI1-120K-fix-32gpus This model is a fine-tuned version of [NousResearch/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - total_train_batch_size: 64 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.2924 | 100 | 0.5279 | | No log | 0.5848 | 200 | 0.4631 | | No log | 0.8772 | 300 | 0.4304 | | No log | 1.1696 | 400 | 0.4153 | | 0.4771 | 1.4620 | 500 | 0.4072 | | 0.4771 | 1.7544 | 600 | 0.4036 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1