File size: 19,642 Bytes
e424766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
"__module__": "stable_baselines3.td3.policies",
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TD3Policy.__init__ at 0x7f3c13b6e940>",
"_build": "<function TD3Policy._build at 0x7f3c13b6e9d0>",
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f3c13b6ea60>",
"make_actor": "<function TD3Policy.make_actor at 0x7f3c13b6eaf0>",
"make_critic": "<function TD3Policy.make_critic at 0x7f3c13b6eb80>",
"forward": "<function TD3Policy.forward at 0x7f3c13b6ec10>",
"_predict": "<function TD3Policy._predict at 0x7f3c13b6eca0>",
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7f3c13b6ed30>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f3c140034c0>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
400,
300
],
"n_critics": 1
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVWQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWaAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sahZSMAUOUdJRSlIwEaGlnaJRoEyiWaAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sahZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgiSxqFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
26
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"dtype": "float32",
"_shape": [
6
],
"low": "[-1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1.]",
"bounded_below": "[ True True True True True True]",
"bounded_above": "[ True True True True True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": {
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
":serialized:": "gAWVOgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwaFlIwBQ5R0lFKUjAZfc2lnbWGUaAgoljAAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwaFlGgTdJRSlHViLg==",
"_mu": "[0. 0. 0. 0. 0. 0.]",
"_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
},
"start_time": 1671800889499773814,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"tensorboard_log": "runs/HalfCheetahBulletEnv-v0__ddpg__1712752751__1671800887/HalfCheetahBulletEnv-v0",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV3QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoAAAAAAAAAHo9Ub4AAAAAAACAP7m+hT8AAAAAu34OPgAAAABG4oG9UVfBvVXdmT9pXxg/YIY6v9V0l7+J4PY7ThGAP716ZrsG24w/hogQPi1olTx2Mj2+AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSxqGlIwBQ5R0lFKULg=="
},
"_episode_num": 1000,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKNB9DJEH+uMAWyUTegDjAF0lEdAsBBImMOwxHV9lChoBkdAozIM6RyOrGgHTegDaAhHQLAUyg5zYEp1fZQoaAZHQKPMJYEnssxoB03oA2gIR0CwGUw/s3Q2dX2UKGgGR0CkoJEal1r7aAdN6ANoCEdAsB3Hz8P4EnV9lChoBkdAoQyWq//Nq2gHTegDaAhHQLAiSqaw2VF1fZQoaAZHQKOJTF72L51oB03oA2gIR0CwJsdK7I1cdX2UKGgGR0CkxeHnU2DQaAdN6ANoCEdAsCtINb1RL3V9lChoBkdAoXgHDxb0OGgHTegDaAhHQLAvyjKgZjx1fZQoaAZHQKQFilCTlkpoB03oA2gIR0CwNE4v38GcdX2UKGgGR0CjA7+LFXJYaAdN6ANoCEdAsDjNVtGd7XV9lChoBkdApR0+lwcYImgHTegDaAhHQLA9TH0se4l1fZQoaAZHQKMUXIlMRHxoB03oA2gIR0CwQczklu3udX2UKGgGR0CkuAPGZNO/aAdN6ANoCEdAsEZQyCWeH3V9lChoBkdAoeJlZcLSeGgHTegDaAhHQLBK0+YtxuN1fZQoaAZHQKN+sYCQtBhoB03oA2gIR0CwT0PVqesgdX2UKGgGR0CkjVoNVinYaAdN6ANoCEdAsFPCsCDEnHV9lChoBkdAoJ1zSCvovGgHTegDaAhHQLBYRvc8DCB1fZQoaAZHQKO/j6a9botoB03oA2gIR0CwXMnhbW3CdX2UKGgGR0CjEcOmR/3GaAdN6ANoCEdAsGFHRIBikXV9lChoBkdAo+TpBVuJlGgHTegDaAhHQLBlsVPva111fZQoaAZHQKG0R/axoqVoB03oA2gIR0CwajRdQfp2dX2UKGgGR0ChVuHSOR1YaAdN6ANoCEdAsG62FdszmHV9lChoBkdAo4cmF8G9pWgHTegDaAhHQLBzOVkc0ch1fZQoaAZHQKLgT1BdD6ZoB03oA2gIR0Cwd7toSL62dX2UKGgGR0CiRxB4lhPTaAdN6ANoCEdAsHxCsmv4d3V9lChoBkdAojKuh9LHuWgHTegDaAhHQLCEZD6nBLx1fZQoaAZHQKIvg9hZyMloB03oA2gIR0CwiOmT1TR6dX2UKGgGR0Cjito68xsVaAdN6ANoCEdAsI1xQj2SMnV9lChoBkdAo0ikaIeo1mgHTegDaAhHQLCR9TpPhyd1fZQoaAZHQKPIiclw97poB03oA2gIR0CwlliEpRXPdX2UKGgGR0CkVQ/OUt7KaAdN6ANoCEdAsJqyDcuannV9lChoBkdAo3Ci0OVgQmgHTegDaAhHQLCfLQ6IWP91fZQoaAZHQKP/zTQVsUJoB03oA2gIR0Cwo6LftQbddX2UKGgGR0CkYesPjGT+aAdN6ANoCEdAsKggFotcwHV9lChoBkdAoe59khA4XGgHTegDaAhHQLCsnPTG5tp1fZQoaAZHQKINIv/zasZoB03oA2gIR0CwsRxFI/Z/dX2UKGgGR0Cjaws6zVtoaAdN6ANoCEdAsLW0F3Y+S3V9lChoBkdAlozZxFRYR2gHTegDaAhHQLC6XbsniNt1fZQoaAZHQKL8fVinYQJoB03oA2gIR0CwvuZ8fFJhdX2UKGgGR0CfY1WfbsWwaAdN6ANoCEdAsMNayOaOP3V9lChoBkdAoWtIa1kUbmgHTegDaAhHQLDH2ooNNJx1fZQoaAZHQKS4aUrTYuloB03oA2gIR0CwzFmGZeAvdX2UKGgGR0Ci6ctE5QxfaAdN6ANoCEdAsNDWobXHznV9lChoBkdAog1l81Gb1GgHTegDaAhHQLDVV0k4WDZ1fZQoaAZHQKIcLAVO9FpoB03oA2gIR0Cw2dZWV/tqdX2UKGgGR0CesGTodMkAaAdN6ANoCEdAsN5NeJHiFXV9lChoBkdAoF42rOqvNmgHTegDaAhHQLDivebutwJ1fZQoaAZHQKSd+eK8+RpoB03oA2gIR0Cw5ynJYDDCdX2UKGgGR0Cjl2hSDRMOaAdN6ANoCEdAsOuDrleWwHV9lChoBkdAo4jruDzy0GgHTegDaAhHQLDviuctoSN1fZQoaAZHQKLEAR5C4SZoB03oA2gIR0Cw933yup0fdX2UKGgGR0CjcKLaEi+taAdN6ANoCEdAsPvqthd+onV9lChoBkdAoOiK0x/NJWgHTegDaAhHQLEAWeiSJTF1fZQoaAZHQKPrHyBkI5ZoB03oA2gIR0CxBMeaa1CxdX2UKGgGR0CjSrtOmBOIaAdN6ANoCEdAsQk+3NLUTnV9lChoBkdAopiL101ZT2gHTegDaAhHQLENrr6+FlF1fZQoaAZHQKJIH9ORDCxoB03oA2gIR0CxEiRPoFFEdX2UKGgGR0CjmTI0qH45aAdN6ANoCEdAsRakdxQzlHV9lChoBkdApCBKMrEtNGgHTegDaAhHQLEbIuKoAGV1fZQoaAZHQKNbHVAiV0NoB03oA2gIR0CxH5/ES/TLdX2UKGgGR0CkzP+gDifhaAdN6ANoCEdAsSQfNzKcNHV9lChoBkdAo0XTwDvE0mgHTegDaAhHQLEon55JK8N1fZQoaAZHQKMA8lBQemxoB03oA2gIR0CxLR20NSZSdX2UKGgGR0Chnzslb/wRaAdN6ANoCEdAsTGeYc/+sHV9lChoBkdAoeptVDKHPGgHTegDaAhHQLE2HBrvb491fZQoaAZHQKOH7w71ZkloB03oA2gIR0CxOpjW5H3DdX2UKGgGR0Cjk+vTgEU1aAdN6ANoCEdAsT8dbt7a7HV9lChoBkdAoo36XMQmNWgHTegDaAhHQLFDf4Kx9oh1fZQoaAZHQKRfRmRNh3JoB03oA2gIR0CxR5VkMCtBdX2UKGgGR0CkTp9MTN+taAdN6ANoCEdAsUutWFN+LHV9lChoBkdAo+vbRIBikWgHTegDaAhHQLFQEqZc9nt1fZQoaAZHQKJIxXe3x4JoB03oA2gIR0CxVJX/LkjpdX2UKGgGR0CiOGEyDZlGaAdN6ANoCEdAsVkS8VYZEXV9lChoBkdAoo5cAiml7GgHTegDaAhHQLFdkfDUExJ1fZQoaAZHQKNV7irksBhoB03oA2gIR0CxYg916mfodX2UKGgGR0ChUlW7voeQaAdN6ANoCEdAsWoa86FM7HV9lChoBkdAoqvlCNS62GgHTegDaAhHQLFulVS4vvl1fZQoaAZHQKSlZas6q81oB03oA2gIR0Cxcw4JzDGcdX2UKGgGR0CkiacjZ+QVaAdN6ANoCEdAsXeI9jgAInV9lChoBkdApFhyRnvlVGgHTegDaAhHQLF8AtBfKIV1fZQoaAZHQKNUSG+K0lZoB03oA2gIR0CxgFiTEBKddX2UKGgGR0CkOQPtD2J0aAdN6ANoCEdAsYSr72tdRnV9lChoBkdAo7s4atLcsWgHTegDaAhHQLGJKwg1WKd1fZQoaAZHQKDvkciGFi9oB03oA2gIR0CxjaOMdcSodX2UKGgGR0CjbelKTSssaAdN6ANoCEdAsZISRmseXHV9lChoBkdApAwzNt65XmgHTegDaAhHQLGWlcY64lR1fZQoaAZHQKV/iKWszVNoB03oA2gIR0CxmwntrsSkdX2UKGgGR0Cke/uqWC2+aAdN6ANoCEdAsZ+K27Wd3HV9lChoBkdApICLAFgUlGgHTegDaAhHQLGkCfthNM51fZQoaAZHQKSb8ku6ErZoB03oA2gIR0CxqIx9srNGdX2UKGgGR0Ckk3RBmf5DaAdN6ANoCEdAsa0PtY0VJ3V9lChoBkdApY1pvUBnz2gHTegDaAhHQLGxj9ZA6dV1fZQoaAZHQKCVivduYQdoB03oA2gIR0Cxtgzz3AVPdX2UKGgGR0CiCAs4tHx0aAdN6ANoCEdAsbqNdkauOnV9lChoBkdAls/CNwR5DGgHTegDaAhHQLG/DhX8wYd1fZQoaAZHQKBKEYUnG85oB03oA2gIR0Cxw46MrEtNdX2UKGgGR0ChGy74agmJaAdN6ANoCEdAscgO2WpqAXV9lChoBkdAozs1ZeRgZ2gHTegDaAhHQLHMjDXOGCZ1fZQoaAZHQKLk96ol2NhoB03oA2gIR0Cx0QtGNJe3dX2UKGgGR0CjewH6uW8iaAdN6ANoCEdAsdWKUOd5IHVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990000,
"buffer_size": 1,
"batch_size": 100,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.98,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7f3c13b6a430>",
"add": "<function ReplayBuffer.add at 0x7f3c13b6a4c0>",
"sample": "<function ReplayBuffer.sample at 0x7f3c13b6a550>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f3c13b6a5e0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f3c13b61780>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"policy_delay": 1,
"target_noise_clip": 0.0,
"target_policy_noise": 0.1,
"_action_repeat": [
null
],
"surgeon": null,
"actor_batch_norm_stats": [],
"critic_batch_norm_stats": [],
"actor_batch_norm_stats_target": [],
"critic_batch_norm_stats_target": [],
"_last_action": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAKBgbT+1KSq/QFSmPg4EWj9Acn8/SHOTPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
}
} |